

Development of the CopterSonde and the 3D Mesonet

Phillip B. Chilson^{1,2,3} & Many More ...

¹School of Meteorology, University of Oklahoma (OU), Norman, OK, US ²Advanced Radar Research Center, OU ³Center for Autonomous Sensing and Sampling, OU

Scales of Motion

Scale	Approximate Length Scale	Approximate Time Scale	Types of Phenomena
Planetary	> ~ 6000 km > ~ 3700 miles	> 1 week	Jet Stream, Trade Winds, Longwave pattern
Synoptic Scale	1000 – 6000 km 620 - 3700 miles	1 day – 1 week	Shortwaves, Fronts, Jet Streaks
Mesoscale	1 – 1000 km 0.62 - 620 miles	1 hour – 1 day	Thunderstorms, Sea Breezes
Microscale	< 1 km < 0.62 miles	< 1 hour	Turbulence, Boundary Layer Phenomena

Structure of the Earth's Atmosphere

Image source: https://bmeafl.com/the-project-proposal/

The ABL: Well, It's Complicated

Complex Flow Fields

Created 3:40:44 PM March 26, 2018 CDT. @ Copyright 2018

Observational Networks

NWS

Upper air sounding surface stations, g Meso Plus many I

NASA/NOA/

Extreme Ultraviolet and X-Ray Irradiance Sensor (EXIS)

> Space Environment In Situ Suite (SEISS)

> > Magnetometer

Solar Ultraviolet Imager (SUVI)

Geostationary Lightning Mapper (GLM) Advanced Baseline Imager (ABI)

CLOUD-MAP: Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics

Four-Year Collaborative Project Supported by the National Science Foundation

July 2015 – July 2019

Creation of the Center for Autonomous Sensing and Sampling

Environment Profiling and Initiation of Convection (EPIC) – Spring 2017

High-resolution profile data from drones and radiosondes was uploaded in real-time for operational use, as well as transects from fixedwing UAVs. This data allowed forecasters to:

- Monitor capping inversions
- Recognize NWP biases in lowlevel moisture
- Interrogate low-level wind profiles
- Revise local severe weather outlooks

Todd Lindley Norman, OK Forecast Office SOO

EPIC: Views from the field

April/May 2017, Oklahoma

ISOBAR (Innovative Strategies for Observations in the arctic atmospheric Boundary |AyeR)

Phil Chilson, Meteorology Bill Doyle, Electrical Engineering Brian Greene, Meteorology Santiago Mazuera, Aerospace Engineering Liz Pillar-Little, Chemistry Tony Segalés, Electrical Engineering

OU Vehicles Used During Campaign

Tuffwing

Plane 1 used for photogrammetry Plane 2 used for CO₂ sampling Equipped with safety parachute Equipped with Pixracer autopilot Records wind speed and direction

CopterSonde 2.1 Pressure, temperature, humidity, wind speed, and wind direction Sensors aspirated by props RTK DGPS Rotates into wind Equipped with Pixracer autopilot

CopterSonde 2.1 Pressure, temperature, humidity, wind speed, and wind direction Sensors aspirated with ducted fan Standard GPS Equipped with Pixracer autopilot

LAPSE-RATE: Lower Atmosphere Process Studies at Elevation: A Remotely Piloted Aircraft Team Experiment

Flux Capacitor

Soundings

CLAMPS

September/October 2018, Oklahoma

CopterSone

It's a Long Way to the Top (If You Wanna Rock 'n' Roll) ~ AC/DC

Evolution

Ņ

The OU CopterSonde

- Specifically designed for thermodynamic and kinematic profiling
- Customized autopilot software
- Sensor data are passed through the autopilot; opens door for adaptive sampling
- Pixhawk 2 running APM Copter, with integrated inertial measurement unit (IMU), GPS and differential GPS
- Position accuracy of ~10 cm in flight
- Has flown to a height of 6,000' AGL in Finland and 10,000' MSL in Colorado

AIRFRAME

Body	Carbon fiber tube (arms),
	G10 fiberglass (internal
	body), and aluminum
(connectors and	d spacers)
Shell	3D printed PLA
Diagonal	50.8 cm
Height	15.2 cm
Fight Controlle	er Pixhawk 2.1 Cube

COMMUNICATIONS

Telemetry Frequency	915 MHz
Radio Frequency	2.4 GHz
Transmission Distance	up to 5 km

GPS ACCURACY

Horizontal (RTK enabled)	\pm 3 cm
Horizontal (RTK disabled)	± 1.5 m
Vertical (RTK enabled)	± 5 cm
Vertical (RTK disabled)	± 3 m

PROPULSION SYSTEM

Brushless Electric MotorLifespan1600 hrskV Rating700 RPM/VMaximum Thrust1.23 kg / rotorMaximum Power500 W/rotor

T-Style PropellersDiameter x Pitch11 x 5.5 inMaterialCarbon Fiber

ESC

Maximum 35 A Continuous Current Burst Current 45 A Maximum Voltage 14.8 V (4S LiPo)

POWER

Battery Type4S LiPoCapacity6750 mAhTypical Endurance15 min

Meteorological Specifications THERMODYNAMIC

Primary Variables T, RH, p Derived Variables $T_d, T_v, \theta, \theta_e, \theta_\omega, r$, $\mathbf{r}_{s}, \mathbf{q}, \mathbf{q}_{s}, \mathbf{e}, \mathbf{e}_{s}, \text{LCL}, \Gamma$ $T: \pm 0.1 \ ^{\circ}C$ Accuracy RH: ± 2 % p: ± 1.5 mbar 20 Hz

Logging Rate

KINEMATIC

Tilt Angles
Horizontal wind
speed and direction
Speed: $\pm 0.6 \text{ m/s}$
Direction: $\pm 4^{\circ}$
50 Hz

Flight Parameters

Maximum Tilt Angle	40°
Maximum Wind Resistance	22 m/s
Maximum Operating Speed	26 m/s
Maximum Flight Ceiling	6,000 ft AGL
Recommended Operating	-20 − 40 °C
Temperatures	
Typical Ascent Rates	1 – 5 m/s
Typical Descent Rates	4 - 6 m/s

Weight (sans battery) 1.61 kg Average All-up Weight 2.25 kg

Oklahoma Mesonet

Components of a 3D Mesonet Station

- Robust and Reliable UAV with Accurate Sensors
- Ground Control Station
- Precision Landing
- Enclosure/Housing
- Automatic Charging
- Risk Mitigation Measures for Unattended Operations
- Data Sharing and Remote Control Capabilities

Ground Control Station and CONOPS

Data Packaging and Communication

Providing a method to communicate data from various field observations to a central processing station and the generate products, which can be shared

Open Acces

Review

Moving towards a Network of Autonomous UAS Atmospheric Profiling Stations for Observations in the Earth's Lower Atmosphere: The 3D Mesonet Concept

Phillip B. Chilson ^{1,2,3,*} ©, Tyler M. Bell ^{1,2} ©, Keith A. Brewster ^{1,4} Gustavo Britto Hupsel de Azevedo ^{2,5} , Frederick H. Carr ¹ , Kenneth Carson ⁶ , William Doyle ² , Christopher A. Fiebrich ^{1,7} ©, Brian R. Greene ^{1,2,3} ©, James L. Grimsley ⁸ , Sai Teja Kanneganti ^{2,9} , Joshua Martin ^{1,2} ©, Andrew Moore ¹ , Robert D. Palmer ^{1,3} , Elizabeth A. Pillar-Little ^{1,2} ©, Jorge L. Salazar-Cerreno ^{2,3,5} , Antonio R. Segales ^{2,3,5} ©, Mark E. Weber ¹⁰ , Mark Yeary ^{3,5} and Kelvin K. Droegemeier ¹

Weather Geeks Podcast <u>https://weloveweather.tv/weathergeekspodcast/</u> Episodes 51 (TORUS) & 79 (3D Mesonet)

TEDxOU Presentation: How Drones Can Improve Weather Prediction Available on Youtube

⁹ School of Computer Science, University of Oklahoma, Norman, OK 73019, USA

- ¹⁰Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK 73072, USA
- * Author to whom correspondence should be addressed.

Received: 1 April 2019 / Accepted: 12 June 2019 / Published: 17 June 2019

Tracer particles can be released into the storm to visualize air flows

Courtesy Leigh Orf, CIMSS/SSEC

Weather Radar Scatter

Scatter From Precipitation

The COk

No Scatter Radar "Blind Zone"

Questions

Strength Through Partnership

Funding for this study provided in part by the National Science Foundation: Award #1539070 (CLOUD-MAP)

