

The Advanced Radar Research Center at the University of Oklahoma

Applications of UAS Related to Radar

Robert D. Palmer

Executive Director, Advanced Radar Research Center Associate Vice President for Research Tommy C. Craighead Chair & Professor, School of Meteorology Adjunct Professor, School of Electrical and Computer Engineering Scientific Fellow, National Severe Storms Laboratory, NOAA

GeoFence Surveillance Radar Development

Mark E. Weber¹, Mark Yeary^{2,3}, Phil Chilson^{2,4,5}, Robert Palmer^{2,4}

¹NOAA OAR National Severe Storms Laboratory (NSSL)
Cooperative Institute for Meteorological Studies (CIMMS), University of Oklahoma
²Advanced Radar Research Center (ARRC), University of Oklahoma
³School of Electrical & Computer Engineering (ECE), University of Oklahoma
⁴School of Meteorology (SoM), University of Oklahoma
⁵Center for Autonomous Sensing and Sampling (CASS), University of Oklahoma

Crawl, Walk, Run Strategy

- 1) "CopterSonde" soundings to 10,000' at Kessler Atmospheric and Ecological Field Site, piloted from OU's National Weather Center
- 2) Oklahoma 3D-Mesonet (120 stations)

Complement to National Rawindsonde Network

3)

U/A Sites
GCOS Sites
GCOS Sites
Rice and Virgin Is
KSJU

Detect and Avoid (DAA) System Architecture

Surveillance

Maneuver Algorithms (MIT/LL) sUAS-Sounder Control

Geofence Radar: Rev 1.0

- Low-cost
- Leverage existing ARRC transceiver/software
- C-band provided low-cost transmitter
- Detection w/comms to ground station

Rev 1.0 – Flight Pattern, Fall 2018

- Working with OU's Department of Aviation
- OU's Kessler Atmospheric and Ecological Field Station (KAEFS) provided the ideal venue to deploy the GeoFence radar
- KAEFS is ~20 km south of OU's main campus

Rev 2.0: X-Band GeoFence

ARRC HADAR RESERVED

- To tighten the beamwidth, while keeping a reasonable antenna size, the operating frequency was changed to X-band.
- Rev 2.0's improvements include: bifurcated antenna solves blind-zone, better slip ring was incorporated, bulky radome eliminated, etc.
- Detailed design was completed in the spring of 2019. Build and test will be completed in the fall of 2019.

Completed X-band Electronics

Completed and Tested

- The UNIVERSITY of OKLAHOMA

Expected Antenna Performance

The UNIVERSITY of OKLAHOMA

Geofence X-Band Mechanical

Geofence X-Band Support Structure

Elevation Adjustment Sturdy aluminum slides allow for precise elevation angle adjustment Tight hole tolerances discourage unwanted movement Main Wedge-lock washers pAdvirdensurataimestfas clamping to resist elevation ship pagerance Optional notches promotevenstenatcourate elevation changes on tRebbyst aluminum and stamless steel components ensure structural stability

Expected Project Outcomes

- Demonstrate **prototype DAA system** and provide design documentation and test data
- Extend KAEFS sUAS Certificate of Operations (COA) to allow remote operations from National Weather Center and increase sounding ceiling to 3 km AGL
- Design data, performance analysis provides foundation for FAA authorization for future regional or national UAS profiling networks

UAV-Based Radar Test and Calibration

Jorge L. Salazar-Cerreno, Arturo Umeyama, Brent Wolf, Anthony Segales, Caleb Fulton

Advanced Radar Research Center (ARRC), University of Oklahoma School of Electrical & Computer Engineering (ECE), University of Oklahoma Center for Autonomous Sensing and Sampling (CASS), University of Oklahoma

CIMMS UAS Workshop • October 2019 • Norman, OK

UAV Probe for Radar Test and Calibration

Enable in-situ test and characterization of a large radar platform including environmental factors such as, radome, neighbor radars, towers, lightning protection, ground reflections diffractions, and temperature.

- Easy to deploy
- Low O&M cost
- Enable different test modes (Radar cal. pattern test, and radome inspection, etc.)

The COBRA DANE an L-band PAR located at Shemya, Alaska

USS Navy Carrier

Raytheon AN/TPY-2 X-Band radars

ARRC UAV RF Probe for PAR Radars

- Easy to deploy (any time and any place)
- No tower is require, low O&M cost
- Enable different test modes (Radar cal. Pattern test, and radome inspection

ARRC UAV Development Timeline

Thank You

We acknowledge the partial support of this work from the Oklahoma Center for the Advancement of Science and Technology (OCAST) grant AR17-047. Partial support was also from the NSSL 2016/2017 Director's Directed Research Fund (DDRF) and the MPAR/SENSR program.