

Use of Stochastic Modeling to improve predictions

Oklahoma, Oct 31-Nov 2 , 2018

Judith Berner

National Center for Atmospheric Research

Outline

- The need for uncertainty representations in ensemble forecasts
- Current stochastic parameterizations
- Next generation stochastic parameterizations

Representing initial uncertainty by an ensemble of states

- Forecast uncertainty in weather models:
 - Initial condition uncertainty
 - Model uncertainty
 - Boundary condition uncertainty
- Represent initial forecast uncertainty by ensemble of states
- Reliable forecast system: Spread should grow like ensemble mean error, if not we have model error

Representing initial uncertainty by an ensemble of states

- Forecast uncertainty in weather models:
 - Initial condition uncertainty
 - Model uncertainty
 - Boundary condition uncertainty
- Represent initial forecast uncertainty by ensemble of states
- Reliable forecast system: Spread should grow like ensemble mean error, if not we have model error

Underdispersivness of ensemble systems

Underdispersivness of ensemble systems

Kinetic energy spectra

Nastrom and Gage, 1985

Stochastic parameterizations

- No separation of scales
- Grid-scale variables cannot fully constrain subgrid-scale motion
- Stochastic parameterization scheme: describes the subgrid-scale motion in terms of a pdf constratined by the resolved flow
- Provides stochastic realizations of the subgrid-flow, not some assumed bulk scale flow

Equilibrium

Stochastic realizations

Outline

- The need for uncertainty representations in ensemble prediction
- Current stochastic parameterizations
- Next generation stochastic parameterizations

Stochastically perturbed tendency scheme (SPPT)

Rationale: Especially as resolution increases, the equilibrium assumption is no longer valid and fluctuations of the subgrid-scale state should be sampled (Buizza et al. 1999, Palmer et al. 2009, Berner et al. 2015)

Local tendency for variable X

Physical tendencies => Unresolved scales

- Perturbs accumulated U,V,T,Q tendencies from physical parameterizations packages
- Same pattern for all tendencies to minimize introduction of imbalances

Stochastic parameter(izations) perturbations (SPP)

Stochastic pattern perturbs parameters @ 15km and 3km

- (Closure tendencies in GF convection scheme)
- Turbulent mixing length, subgrid cloud fraction, thermal and moisture roughness lengths in MYNN PBL
- Soil moisture, leaf index, etc in RUC LSM

Jankov et al., et al 2016, 2018

SPP to Thompson microphysics scheme

C.) Cloud Condensation

A.) Graupel Y-intercept parameter

B. Cloud water gamma

With Greg Thompson, Jason Otkin, Sarah Griffin, Maria Frediani Fanyou Kong

Stochastic pattern generator: Spatio-temporal correlations

User defined: magnitude, spatial, and temporal time scales

Brierscore skill score near the surface

Limited vs unlimited predictability in Lorenz 1969

FIG. 1. Error energy per unit wavenumber, $K^{-1}Z(K, t)$ for t = 0, 2 in steps of 0.1 for (a) SQG turbulence and (b) 2DV turbulence. The heavy solid line indicates the base-state kinetic energy spectra per unit wavenumber, $K^{-1}X(K)$, which has a -5/3 slope for SQG and a -3 slope for 2DV.

Rotunno and Snyder, 2008

2DV – 2D Vorticity equation SQG - surface quasi-geostrophic equations

Brierscore skill score near the surface

- Is it sufficient to represent instantaneous uncertainty (SPP) or do we need to include "memory term", which represents the integrated effect from past model errors (SPPT, SKEBS)?
 - Larger spatial scales due to upscale error-growth?

2

Outline

- **7** The need for uncertainty representations
- Current stochastic parameterizations
- Next generation stochastic parameterizations

Upscale error growth

a Z500 anomaly 'Canada high' 'Rockies trough' 18 -14 -10 -6 -2 -14 -10 -6 -2 2 6 10 18 2 10 6 Unit = m **b** CAPE anomaly 'N. America CAPE region' -76 -20 -12 -4 12 20 76 -76 -20 -12 -4 4 12 20 76 4

Unit = J/kg

Rodwell et al. 2013

Flow-dependent error growth

Spread and error

Annual means N.Hem. (ECMWF)

- Better Spread-error agreement (better obs, initial conditions, forecast model and uncertainty schemes
 Allows for a reduction of initial condition perturbations
 - (important for shortrange weather forecasts)
- Spread curve becomes exponential !

Curtosy Mark Rodwell

Potential of stochastic parameterizations to reduce model error

Importance of bias

Impact of Stochastic Parameterizations on low-frequency modes in CESM

Important for subseasonal to seasonal forecasting

Summary

- Development is away from "ad hoc" schemes and toward more "process-based" uncertainty representations in close collaborations with parameterization developers.
- As horizonal resolution increases will it be sufficient to represent instantaneous uncertainty (e.g. through SPP) instead of more integrative model-error schemes (not yet there)
- Upscale error-growth of mesoscale processes should be studies process-based as well as statistically (spread/error)

- Stochastically Perturbed Parametrisation Tendencies (SPPT)
 - represents random errors due to model's physical parametrisation schemes
- Implemented in models worldwide

$$T = D + (1+e)\sum_{i=1}^{n} P_i$$

- T Total tendencyD Dynamics tendency
- P Physics tendency

Pattern correlated in space & AR(1) in time:

σ	L (km)	au (days)
0.52	500	0.25
0.18	1000	3
0.06	2000	30

All schemes are perturbed using same pattern. All variables perturbed using same pattern. Pattern constant in height

Palmer et al, 2009. ECMWF Tech Memo 598

Snapshot of optimal SPPT 'e' perturbation

$$T - D - \sum_{i} P_i - b(P) = e \sum_{i} P_i$$

Calculate best fit ${\it e}$ as a function of position for a single time step

 \Rightarrow Snapshot of optimal stochastic perturbation at a given time

Spatial and temporal correlation

- Model temporal and spatial correlation scales as arising from a sum over several scales
- Iteratively fit each scale, long to short

First scale: ~ grid scale Second scale: ~ 200–400 km Ocean provides spatial correlations

σ	L (km)	τ
0.35	32	1 hr
0.17	370	4.5 d
0.10	(2000)	(30 d)

+ skewness?

NEW:

T-tendency

Data grouped by level. **Dark blue**: levels 91—87 (ground—995 hPa) **Yellow**: levels 32—36 (86—60 hPa)

New 2018 HWT Example

Lagrangian" growth-rate (following EnsMn horizontal flow) for EDA

background σPV_{315}

PV315=2 & V850 from control forecast, precipitation is ensemble-mean. 1d running-mean gives 12h-integrated growth rate with any diurnal cycle removed. T21 smoothed

Rodwell et al. 2018