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Warn-on-Forecast System
• The Warn-on-Forecast (WoF) project has the primary goal of improving short-term (0-3 h) forecasts of high 

impact weather events using NWP
• High impact weather include tornados, severe winds, flash flooding, and even hurricanes. 

• The NSSL Experimental Warn-on-Forecast System for ensembles (NEWS-e) was developed to address this goal
• https://www.nssl.noaa.gov/projects/wof/news-e/realtime/

• Summary
• 36 member ensemble cycled at 15 minute intervals using an ensemble Kalman filter initialized at 1600 or 1800 UTC daily
• Initial and boundary conditions derived from an experimental HRRR ensemble 
• Horizontal grid spacing: 3 km;      regional domain (up to 300 x 300 grid points)
• 51 vertical levels from the surface to ~10 hPa

• Currently assimilates conventional synoptic observations, Oklahoma mesonet surface observations, WSR-88D 
radar reflectivity and radial velocity observations, and GOES-16 cloud water path retrievals within each 
domain

• Future (2019)
• Additional GOES-16 data in the form of clear-sky water vapor radiances and high resolution atmospheric motion vectors 

(AMVs) will be assimilated
• Higher horizontal and vertical resolutions will be tested. 



Warn-on-Forecast System

• Variations in start time, number and length of forecasts exist for different applications 



Current Satellite Data Assimilation in Warn-on-Forecast
• 1. Cloud Water Path (CWP): Integrated cloud water retrieved from GOES-16 visible and infrared 

observations (Jones et al. 2016).
• Assimilated into NEWS-e starting in 2016 and has proved effective in improving cloud analyses, convective initiation, 

and the thermodynamic environment. 

• Observations objectively analyzed to a 5 km grid and parallax correction applied

• 2. Clear-sky water vapor channel (6.2, 6.9, 7.3 µm) radiances: Sensitive to the mid and upper-tropospheric 
atmospheric moisture content (Jones et al. 2018). 

• Assimilation of the 6.2 µm channel was tested during FFAIR experiment this (2018) summer and no adverse impacts 
were observed. 

• Retrospective testing of multiple severe weather cases from the spring and summer experiments assimilating the 6.2 
and 7.3 µm channels is underway. 

• 3. Atmospheric Motion Vectors (AMVs): Wind speed and direction derived from cloud and water vapor 
objects over a series of images

• GOES-16 AMV retrievals are generated at high enough spatial and temporal resolution to be useful by NEWS-e. 
Visible retrievals being the most numerous. 

• Retrospective testing underway, with plans to implement in 2019 NEWS-e



Challenges
• Satellite data assimilation into a WoF system has many significant challenges

• 1. What is the most effective satellite observation type to assimilate?:

• Does improving the cloud analysis or overall near-storm environments (moisture, winds) provide the 
greatest overall impact to the model? 

• 2. How does satellite data assimilation impact current radar data assimilation?

• Satellite and radar observations must have consistent geo-location so that small-scale features are 
assimilated at the right place and time

• Is assimilating cloud information in high precipitation detrimental to radar-only DA?

• 3. Satellite DA must be able to show skill in high impact weather forecasting compared to radar-
only DA methods

• Question to answer:  Does satellite data help forecast if a tornado is going pass by my house in an hour

• 4. Assimilating satellite and radar data simultaneously is difficult 



Cloud water path (CWP) impact on Cloud Analysis
• Two experiments from May 1 2018 are compared:

• 1. NOCWP: Assimilates all available conventional and radar observations

• 2. CWP: Assimilated conventional, radar, and GOES-16 CWP retrievals

CWPNOCWP

SWFLUX SWFLUX

GOES-16 IR

2115 UTC 2115 UTC 2122 UTC



Improvement in Reflectivity and Rotation Forecasts
• Reflectivity and rotation objects from the model are verified against observed reflectivity and 

rotation objects from MRMS data. See Skinner et al. (2018) for details
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3-h probability forecasts of reflectivity 
and 2-5 km updraft helicity (UH) 

starting at 2100 UTC 1 May 2018 
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Clear-sky water-vapor radiance assimilation
• Assimilating radiances into the NEWS-e system required several improvements over existing methods

• Quality controlled, smoothed, and cloud cleared radiances are generated from L1B radiances combined with L2 
cloud products

• Can be performed in real-time with a latency of < 5 minutes
• Processed at 15 minute intervals, with a horizontal resolution of 5 km

• Channels 8 (6.2µm) and 10 (7.3µm) assimilated. Channel 9 (6.9µm) held out due to high correlation with other two

• New CRTM version 2.3 with updated ABI coefficients has been integrated into GSI v3.6
• Additional changes to include an “abi” observation type have also been made
• Done with help from Ben Johnson and Ling Lu
• Code updated to read in QC’ed radiance file from above. 

• New Bias-adjustment method
• Bias adjustment in satellite DA is important to prevent a dry or moist bias being introduced into the system
• The current GSI-EnKF bias adjustment system is not really designed for high resolution and rapid cycling applications 
• A potentially more elegant solution is applying a histogram matching technique

• Previously used on adjusting SSMI / TMI / AMSR-E passive microwave observations into a consistent dataset for hurricane forecasting 

• Applicable to both clear and cloudy radiances. 



Histogram matching
• The observed distribution of TB is matched to the biased synthetic distribution to generate a new, reduced-bias synthetic TB

analyses, which are then used for the priors in the EnKF system 

• Initial testing is positive, and functions for both clear-sky and all-sky radiance distributions. Still needs some tuning up. 

• See Jones and Cecil (2006) for additional details 

Clear-sky

All-sky

Most high-cirrus clouds 
removed by QC prior 
to matching

Single analysis time

Single analysis time



Example of GOES-16 Radiance DA
29 April 2018

• Assimilating 6.2 and 7.3 um radiances clearly has an impact on the environment and corresponding convection

• Are the impacts significant and correct ???

GOES-16: 6.2 um NOWV ensemble mean 6.5 um WV ensemble mean 6.5 um

2122 UTC 2115 UTC 2115 UTC



Example of GOES-16 Radiance DA 29 April 2018

• Ensemble mean CAPE and surface 
dewpoint at 2115 UTC (15 min forecast 
from 2100. UTC)

• Assimilation of clear-sky radiances 
modifies the environment in several ways

NOWV

WV

CAPE 2-m Dewpoint

Increases CAPE

Decreases surface moisture

Increases surface moisture

Ensemble-Mean Dewpoint Biases (K)
MODEL T=0 T=90
NOWV -1.85 -1.79
WV -1.37 -1.24

• Assimilating WV radiances appears to 
improve near-storm environment



Example of GOES-16 Radiance DA  29 April 2018

• 90 min reflectivity forecasts initialized at 2100 
UTC

• The NOWV experiment moves convection too far 
east and has excessive member-to-member 
spread resulting in a high false alarm rate

• The WV experiment reduces false alarms with 
fewer members having an east bias

NOWV

WV

Reflectivity >40 dBZ paintball plot

Colors = individual members
Gray = MRMS reflectivity

Orange = False Alarm
Blue. = Hit

Reflectivity Verification Skill at t=90 min
MODEL FAR POD CSI
NOWV 0.69 0.77 0.30
WV 0.55 0.94 0.44

• Reflectivity skill scores improved! 



Atmospheric motion vector assimilation 

• The AMV algorithm developed for the GOES-R ABI is used
operationally at NOAA/NESDIS and follows the steps below:
o Obtain a set of three precisely calibrated, navigated and co-

registered images in a selected IR or visible channel.

o Locate and select a set of suitable targets in the middle image
domain.

o For each image pair, use a correlation algorithm to derive the most
representative for the target scene.
o -- When tracking cloud target scenes ABI channels 2, 7, 8 or 14 are

used.

• -- When tracking moisture gradients in clear target ABI channels 8,
9 or 10 are used.

• -- Assign a height to the derived wind. (NCEP GFS model are used
to calculate the target heights).

o Average the vectors derived from each of the image pair.

o Perform the quality control and assign quality indicator.

o Assimilating AMVs can improve the environment since little
wind information is assimilated otherwise

Low-level 
Visible retrievals

High-level
WV channel retrievals



• Assimilating AMVs 
improved reflectivity 
forecasts

CNTL (no AMVs) 

AMV (with AMVs) 

OBS (MRMS) 

Event 20180601; 3-h 
Forecast from 2100 UTC

1HR FST 2HR FST 3HR FST

1HR FST 2HR FST 3HR FST

22-UTC 23-UTC 00-UTC

Ensemble mean 
reflectivity



BOO!!!



Satellite object-based verification
Jones et al. (2018)

• Verify cloud objects from synthetic satellite data against observations

• Similar to reflectivity and rotation object verification described by Skinner et al. (2018)

• Motivation for this was a high cirrus cloud bias observed during 2017 NEWS-e HWT using the NSSL 2-
moment microphysics scheme.

• The 2016 version of NEWS-e using Thompson microphysics had a more realistic depiction of cirrus clouds 
generated from convection

• Satellite objects were used to quantify these differences and develop a modified NSSL scheme to 
address the biases observed in 2017

• One key challenge is to improve the cloud analysis without significantly impacting reflectivity and rotation 
scores. 

• Changes included reducing CCN, switching the ice hydrometeor fall speed formulation, and increasing hail 
and graupel collection efficiencies.

• Retrospective testing conducted on 6 severe weather events from 2017
• Original NSSL (NVD-RLT), Thompson (THOMP), and modified NSSL (NVD-MOD) schemes were tested and 

validated using the satellite object based methods. 



Satellite IR Object Example

• Observed IR satellite cloud objects are defined is regions where IR TB < 225 K

• Similar methods applied to cloud top pressure and cloud water path objects

• Also possible to generate ”moisture” objects from water vapor imagery 



Sensitivity of IR TB to cloud microphysics

• Tornado warned storms in 
New Mexico generating 
cirrus anvils

• Low-level clouds present 
over much of Texas

Reflectivity GOES-16 IR • NVD-MOD decreases anvil 
converge significantly 
compared to original and 
is similar to THOMP and 
observations 

IR TB increases, 
sensing surface 

instead of clouds in 
NVD-MOD

Anvils too long Anvils more realistic 



IR Performance Diagrams

• For all 2017 cases, NVD-RLT generates the lowest skill scores for IR objects

• Thompson is generally better, with NVD-MOD having similar to improved skill compared to THOMP

• Modifications to NSSL microphysics were successful. Also, no degradation in reflectivity forecasts were 
observed 

1-hour
forecasts

Better Better



Wrapping Up

• All forms of GOES-16 satellite data assimilation have shown promise in improving high impact weather 
forecasts using a NEWS-e based system

• CWP observations are currently the most effective, though the potential of AMVs has not been fully 
explored.

• Clear-sky radiance DA was successful, but the overall magnitude of the improvements are small

• We are running out of room to improve the current NEWS-e system by assimilating more data. 

• More DA cannot overcome model error.

• Future Observations:

• All-sky radiances (better than CWP ?)

• GLM lightning data (useful in coastal regions for hurricane forecasting)

• Visible spectrum assimilation (utilize very high resolution information)



Questions:

• Disclaimer: No warranty is provided on the answers. 
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