UNCERTAINTIES IN PRODUCTS DERIVED FROM RADAR

> Alexander Ryzhkov With contributions from Petar Bukovcic, Amanda Murphy, Erica Griffin, Mariko Oue

Uncertainty in Radar Retrievals, Model Parameterizations, Assimilated Data and In-situ Observations: Implications for the Predictability of Weather October 31 – November 2, 2018, Norman

### Layout of the talk

- Polarimetric microphysical retrievals in rain
- Polarimetric microphysocal retrievals in ice / snow
- Multifrequency polarimetric radar retrievals

Two possible ways to optimize microphysical parameterization of NWP models

- Radar microphysical retrievals
- Forward radar operators

## Two sources of errors in radar microphysical retrievals

- Errors due to natural variability of microphysical properties of hydrometeors
- Radar measurement errors

# Polarimetric microphysical retrievals in rain

#### **Estimation of liquid water content (LWC)**



#### Estimation of rain rate (R) S band



- The estimates of LWC and R from specific attenuation A are much less affected by the DSD variability than the Z- or K<sub>DP</sub>-based estimates
- The A-based estimates are immune to radar miscalibration, attenuation, partial bream blockage, and impact of wet radome
- Cloud modeling community should utilize specific attenuation for estimation of LWC and R following its successful use for the WSR-88D QPE. R(A) and LWC(A) can be made a routine products on the WSR-88D network

#### Fractional standard deviation of the LWC estimate



- The accuracy of the LWC estimate is a function of LWC varying between 15 and 25% for lower LWC and not exceeding 40% for larger LWC
- The accuracy of the LWC(A) estimator is 4 5 times better than the one for the R(Z) estimator for lower LWC

#### Estimation of the median diameter of raindrops D<sub>0</sub>



- Differential reflectivity Z<sub>DR</sub> is commonly used for estimation of D<sub>0</sub>
- FSD of the estimate related to the DSD variability is 10 – 12 %
- Measurement errors of Z<sub>DR</sub> (as low as 0.1 – 0.2 dB) may produce much larger impact on the accuracy of the D<sub>0</sub> estimate than the DSD variability, especially for lower values of D<sub>0</sub>
- Combined use Z and A may offer a very attractive alternative to the Z<sub>DR</sub> – based estimator. This requires further exploration

Polarimetric microphysical retrievals in ice / snow

#### Ice microphysical retrievals

- All existing ice microphysical retrievals are based on the use of radar reflectivity Z measured at a single or multiple radar frequencies
- The IWC(Z) relations are notoriously inaccurate because they are strongly parameterized by (a) mass-weighted diameter D<sub>m</sub>, (b) total concentration N<sub>t</sub>, and (c) density (or degree of riming)

$$N(D) = N_{0s} \exp(-\Lambda_s D) \qquad \rho(D) = \alpha D^{-1} \qquad \Lambda_s = 4 / D_m$$
$$WC = 3.8110^{-4} \alpha^{-0.2} N_{0s}^{0.4} Z^{0.6} \qquad IWC = 3.0910^{-3} \frac{Z}{\alpha D_m^2}$$

- D<sub>m</sub> varies 2 orders of magnitude
- N<sub>t</sub> varies 4 orders of magnitude
- $\alpha$  changes at least by a factor of 4

## Variability of the intercept in the IWC(Z) power-law relation as a function of N<sub>0s</sub> (Bukovcic et al. 2018)

Disdrometer snow measurements in Oklahoma



#### **Basic formulas for polarimetric ice retrievals**

$$Z = \frac{|K_{\rm i}|^2}{|K_{\rm w}|^2} \frac{1}{\rho_{\rm i}^2} \int \rho_{\rm s}^2(D) D^6 N(D) dD$$
$$K_{\rm DP} = \frac{0.27\pi}{\lambda \rho_{\rm i}^2} \left(\frac{\varepsilon_{\rm i} - 1}{\varepsilon_{\rm i} + 2}\right)^2 \int F_{shape} F_{orient} \rho_{\rm s}^2(D) D^3 N(D) dD$$

#### Z is proportional to the 4<sup>th</sup> moment of snow SD whereas K<sub>DP</sub> is proportional to its 1<sup>st</sup> moment

**Exponential size distribution** 



#### Median volume diameter as a function of $[Z/(K_{DP}\lambda)]^{1/3}$



Thin lines  $-\sigma = 10^{\circ}$ Thick lines  $-\sigma = 40^{\circ}$ 

$$\sigma = \frac{180}{\pi} \frac{L_{dr}^{1/2}}{(1 + Z_{dr}^{-1} - 2\rho_{hv}Z_{dr}^{-1/2})^{1/2}}$$

The width of the canting angle distribution σ in ice typically varies between 10 and 40°. This is a serious source of uncertainty



#### Radar-retrieved vertical profile of $\sigma$



#### Utilization of the $Z_{DP}/K_{DP}$ ratio for estimation of $D_m$

 $\mathbf{Z}_{\mathsf{DP}} = \mathbf{Z}_{\mathsf{h}} - \mathbf{Z}_{\mathsf{v}}$ 

|    | Crystal habit               | с     | d     |
|----|-----------------------------|-------|-------|
| 1. | Dendrites                   | 0.038 | 0.377 |
| 1. | Solid thick plate           | 0.230 | 0.778 |
| 1. | Hexagonal plates            | 0.047 | 0.474 |
| 1. | Solid columns (L/h < 2)     | 0.637 | 0.958 |
| 1. | Solid columns (L/h > 2)     | 0.308 | 0.927 |
| 1. | Hollow columns (L/h < 2)    | 0.541 | 0.892 |
| 1. | Hollow columns (L/h > 2)    | 0.309 | 0.930 |
| 1. | Long solid columns          | 0.128 | 0.437 |
| 1. | Solid bullets (L < 0.3 mm)  | 0.250 | 0.786 |
| 1. | Hollow bullets (L > 0.3 mm) | 0.185 | 0.532 |
| 1. | Elementary needles          | 0.073 | 0.611 |



 $IWC \approx 4.010^{-2} \frac{K_{DP} \lambda}{1 - Z_{\perp}^{-1}}$ 

 $h = cL^d$ 

$$D_{\rm m} = -0.1 + 2.0 \,\eta$$

$$= \left(\frac{Z_{\rm DP}}{K_{\rm DP}\lambda}\right)^{1/2}$$

η

$$\gamma = \alpha D_m^2 \approx 0.78\eta^2 = 0.78 \frac{Z_{DP}}{K_{DP}\lambda}$$

 $\log(N_{t}) = 0.1Z(dBZ) - 2\log(\gamma) - 1.33$ 

The  $Z_{DP}/K_{DP}$  ratio provides estimate of  $D_m$  which is immune to the particles shape and orientation

## Sensitivity to the microphysical variability of ice hydrometeors

- The suggested estimates of IWC and  $D_m$  are not sensitive to the variability of number concentration
- The suggested relations have been optimized for exponential size distribution of ice, hence they may need to be adjusted for gamma SD (particularly for negative shape factor μ).
- The FSD of the IWC and  $D_m$  estimates is within 20 % if  $-1 < \mu < 1$
- IWC tends to be overestimated and  $D_{\rm m}$  underestimated for  $\mu$  < -1
- The D<sub>m</sub>(K<sub>DP</sub>,Z) estimate is immune to the variations of ice density (or m – D relations) but is sensitive to the shape and orientations of ice particles
- The  $D_m(K_{DP}, Z_{DP})$  relation is immune to the variability of shapes and orientations but is sensitive to ice density (or degree of riming).

#### General dependencies of the shape factor $\mu$



#### The impact of measurements errors of $K_{DP}$ and $Z_{DR}$ ( $Z_{DP}$ )

- Statistical errors of the point measurements of  $K_{DP}$  and  $Z_{DR}$  are prohibitively large. SD( $D_m$ ) > 70% if  $K_{DP}$  < 0.05 deg/km; SD( $D_m$ ) > 25% if  $Z_{DR}$  < 0.2 dB
- Aggressive spatial averaging of K<sub>DP</sub> and Z<sub>DR</sub> is required to obtain their meaningful values which is inevitably results in the degradation of spatial resolution
- Various techniques for processing and presentation of polarimetric radar data have been developed recently (QVP, range-defined QVP, CVP, 4D-grid) to reveal polarimetric signatures in ice / snow, to reduce statistical errors in polarimetric radar variables, and improve their vertical resolution
- The best results are achieved in the dendritic growth layer and the worst are just above the freezing level where K<sub>DP</sub> and Z<sub>DR</sub> signatures almost vanish as a result of strong aggregation of dry snowflakes

#### QVP example for stratiform rain



### QVP example for snow



## Midlatitude vs. Tropical MCSs



## Midlatitude vs. Tropical MCSs



## Midlatitude vs. Tropical MCSs



#### Dual-frequency polarimetric radar measurements with Ka-band and S-band radars

Courtesy of Pavlos Kollias and Mariko Oue

KASPR





**SBU – Stony Brook University** 

KASPR – Ka-band scanning polarimetric radar

#### **KOKX WSR-88D**

#### **KASPR**



KOKX and KASPR Kdps are almost perfectly matched The difference between Z(Ka) and Z(S) are related to (1) resonance scattering, (2) attenuation, and (3) differences in sensitivities and sampling volumes

#### Comparison of Z and Kdp measured by KASPR and KOKX at 1 km altitude



Time [UTC]

## Dual-frequency polarimetric radar measurements from satellite and ground-based radars (Matrosov 2018)



### Conclusions

- The quality of microphysical retrievals can be significantly improved if multiparameter (particularly polarimetric) radar measurements are used instead of a sole reflectitivity factor
- It is strongly recommended to use specific attenuation A for microphysical retrievals in rain
- Novel polarimetric algorithms for microphysical retrievals in ice / snow show great promise and outperform conventional techniques based on reflectivity
- Recently developed techniques for processing and displaying polarimetric radar variables (e.g., QVP) allow to recognize "fingerprints" of individual microphysical processes and to improve the quality of radar estimates and retrievals
- The network of WSR-88D radars provides tremendous resource for cloud modelers, particularly if complemented with higher-frequency cloud radars operated on the ground or from space