

Uncertainty of Ground-based Radar Observations and Their Usage

Guifu Zhang, Jidong Gao, Ming Xue, Youngsun Jung, Vivek Mahale and Bryan Putnam

October 31, 2018 NWC Uncertaintv Workshop

What are sources of uncertainty? How to reduce and represent errors?

Radar Observations and Connection with Weather State

- Multi-parameter Doppler polarimetric radar measurements (data) (y) allow better characterization of weather: microphysical parameterization and initial condition
- More measurements mean more errors and more difficult to use, need better understanding and representation of physics and errors/uncertainties.
 - State representation x
 - Observation operator H(x)
 - Measurements y

Current Status of Using PRD

- Common usage
 - Observation study (Kumjian&Ryzhkov 2008)
 - HCA (Park et al. 2009):
 - QPE: $Z = 300R^{1.4} \iff R = 0.017Z^{0.714}$
 - QPF (Smith et al. 1975):

$$Z_{ex} = \frac{|K_x|^2}{|K_w|^2} \left(\frac{\rho_x}{\rho_r}\right)^2 Z_x \quad \iff \quad q_r = \left(\frac{Z\pi^{1.75}N_0^{0.75}\rho_r^{1.75}}{10^{18} \times 720\rho^{1.75}}\right)^{4/7}$$

- Limitations
 - Empirical, not accurate
 - No error statistics, not optimal
 - − Do not produce other NWP model state parameters: N(D), N_t, Z = M₆ \neq Z_h....

What is the optimal way to use radar data?

Optimal Use of Radar Data

Assimilation: the process of taking in and fully understanding information or ideas

Bayesian retrieval

The posterior PDF of the state ${\boldsymbol x}$ when measurement ${\boldsymbol y}$ is given

$$p(\mathbf{x} | \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}$$

When x and y are jointly Gaussian distributed, maximum a posteriori probability (MAP) estimate, maximizing p(x|y) is equivalent to minimizing the cost function J

• Variational analysis (Lorenc 1986).

$$J = [\mathbf{x} - \mathbf{x}_{b}]^{t} \mathbf{B}^{-1} [\mathbf{x} - \mathbf{x}_{b}] + [\mathbf{y} - \mathbf{H}(\mathbf{x})]^{t} \mathbf{R}^{-1} [\mathbf{y} - \mathbf{H}(\mathbf{x})]$$

- Observation errors
 - Represented by observation error covariance R
 - Can occur in observation y and observation operator H

Radar Measurement Errors: R

• Sampling errors, understood and manageable

- Calibration error (Zrnic et al. 2016; Ice et al. 2014)
- Clutter and noise contamination (Torres and Ward 2014)
- Non-uniform beam filling (Ryzhkov 2006)
- System performance issues: Hardware instability, signal processing, mode^{hv} of operation, post processing (QC)
- Inflated error values used in DA (e.g., 5dB vs 1dB for Z_H)

Forward Observation Operator: H(x)

- "the heart of a successful and accurate retrieval method is the forward model" (Rodgers 2000), not another set of Z-R type of empirical relations.
- A few polarimetric radar operators have been developed (Smith et al 1975, Zhang et al. 2001, Jung et al. 2008&2010, Ryzhkov et al. 2011). But the best operators have not been obtained
- The best observation operators is the ones that are
 - physically accurate/representative,
 - numerically efficient, and
 - easily differentiable

Formulation for PRD operators

Intrinsic variables:

$Z_{hh,vv} = \frac{4\lambda^4}{\pi^4 K ^2} \int s_{hh,vv}(\pi,D) ^2 N(D) dD$
$Z_{DR} = 10 \log \frac{Z_{hh}}{Z_{m}} Z_{H,V}(r) = 10 \log_{10} \left[Z_{hh,vv}(r) \right]$
$\tilde{\rho}_{hv} = \frac{\int s_{hh}^{*}(\pi, D) s_{vv}(\pi, D) N(D) dD}{\left[\int s_{hh}(\pi, D) ^2 N(D) dD \int s_{vv}(\pi, D) ^2 N(D) dD \right]^{1/2}}$
$K_{DP} = \frac{180\lambda}{\pi} \int \operatorname{Re}[s_{hh}(0,D) - s_{vv}(0,D)]N(D) dD$

Observed variables

$$Z'_{H,V}(r) = Z_{H,V}(r) - 2\int_{r}^{r} A_{H,V}(l) dl$$

$$Z'_{DR}(r) = Z_{DR}(r) - 2\int_{r}^{r} A_{DP}(l) dl$$

$$\phi_{DP} = 2\int_{r}^{r} K_{DP}(l) dl$$

$$\Phi_{DP} = \phi_{DP}^{0} + \delta = \frac{180}{\pi}(\phi_{dp} + \delta_{d})$$

 $Z \equiv M_6 = \int D^6 N(D) dD$

(Smith et al. 1975: Rayleigh scattering appr. & constant density)

$$Z_{hh,vv} = \frac{4\lambda^4}{\pi^4 |K|^2} N_0 \alpha^2 \Lambda^{-(\mu+2\beta+1)} \Gamma(\mu+2\beta+1)$$

(Zhang et al. 2001&Jung et al. 2008: fitting & analytical integration

$$Z_{hh,vv} = \frac{4\lambda^4}{\pi^4 |K|^2} \sum_{i=1}^{L} |s_{hh,vv}(\pi,D_i)|^2 N(D_i) \Delta D$$

(Jung el al. 2010: T-matrix calculation, numerical integration)

- Two issues
 - Microphysics (MP) modelling
 - Electromagnetic (EM) modelling

Microphysics (MP) Modeling Error

Drop/Particle Size Distribution (DSD/PSD) modelling

Microphysics (MP) Modeling Error (continued)

 $\gamma = 0.9951 + 0.0251D - 0.03644D^2 + 0.005303D^3 - 0.0002492D^4$

Microphysics (MP) Modeling Error (continued)

Bulk Snow Density Dry snow density 0.5 0.45 Observations lolroyd (1971) (D) = 0.178D-0.922 0.4 $\rho_{\rm s} = 0.178 D^{-0.922}$ 0.35 Snow density (g cm⁻³) 0.3 0.25 0.2 Wet snow density 0.15 $\rho_{ws} = \rho_{ds}(1 - \gamma_w^2) + \rho_w \gamma_w^2$ 0.1 0.05 0 0 (b) (a) Wet Snow Density, g/cm³ 70 90 80 80 80 (d)0

0.2

0

0.4

% of melting

0.6

0.8

1

Electromagnetic (EM) Modelling Error

• Mixing vs layered model

- $\vec{P} = (\varepsilon_r 1)\varepsilon_0 \vec{E}$
- Different mixing models: background vs inclusion

Electromagnetic (EM) Modelling Error (continued: scattering calculation)

Simulation of Polarimetric Signatures with Single and Two Moment Microphysics

(Jung, Xue, Zhang 2008a&b, 2010; Program available on ARPS website Being widely used by the community: Snyder et al. 2017,Li et al. 2015, Posselt et al. 2015...)

Simulated Polarumetric Signatures With Different Microphysics Parameterization Schemes

2100 UTC 20 May 2013

New Parameterized Dual-Pol Operators

- Most operational NWP models use one or double moment microphysics parameterization schemes
- Polarimetric radar variables are calculated and fitted with two state parameters of mean mass-weighted diameter (D_m) and water content (W_x=ρq_x).
- For rain, we have:

$$Z_h \approx \rho_a q_r \left(-1.725 + 28.49 D_m + 36.046 D_m^2 - 1.746 D_m^3 - 0.4899 D_m^4 \right)^2$$

$$Z_{dr} \approx 1.019 - 0.143D_m + 0.317D_m^2 - 0.065D_m^3 + 0.00416D_m^4$$

 $K_{DP} \approx \rho_a q_r \left(-0.0356 D_m + 0.132 D_m^2 + 0.00320 D_m^3 - 0.00302 D_m^4 \right)$

 $\rho_{hv} \approx 0.999 + 0.00826 D_m - 0.0117 D_m^2 + 0.00361 D_m^3 - 0.000344 D_m^4$

• For mixed phases, we use

$$V_{X} = \left(\rho q_{x}\right)^{\alpha} \sum_{m=0}^{M} \left(a_{Xm}(\gamma_{x})D^{m}\right)^{2} \qquad a_{Xm}(\gamma_{x}) = \sum_{n=1}^{N} c_{Xmn}\gamma_{x}^{n}$$

Rain

Snow

Hail

Graupel

Idealized Case Study

- Integrate a convective scale model ARPS 2-h to get rain, snow, graupel, and hail mixing ratios for an idealized thunderstorm with the NSSL 2moment microphysics scheme.
- Model parameters: dx = dy = 1 km, dz = 500 m; nx=ny=64; nz=35
- Use the above dual-pol simulators to calculate dual-pol variables: $Z_h,\,Z_{DR},\,K_{DP},\,\rho_{hv}$
- Compare the new simulators with the relatively complicated T-Matrix method published by Jung et al. (2010), and a relatively simple parameterized scheme.

Reflectivity Z_H

ARPS/ZXPLOT may20, Version 5.4, May 20 Sounding Plotted :01 /10/1 17:4 Loc I Ime

ARPS/Z)PLOT may20, Version 5.4, May 20 Sounding Plotted 2018/10/19 14:53 Local Time

Vertical

Reflectivity Z_H

ARPS/20PLOT may20, Yersian 5.4, May 20 Sounding Platted 2018/10, 19 Jak 11, and Time

Differential Reflectivity Z_{DR}

New

Operator

Horizontal

Specific differential phase K_{DP}

Horizontal

Co-polar correlation coefficient ρ_{hv}

Horizontal

Vertical

Reflectivity Compare (Z=0)

To Achieve Our Goal of Improving Weather Understanding and Forecasts

- Efficiently utilize all the radar measured information and physics constraints
- All compatibility and connection among different components
- Minimize the uncertainty in all the components

Summary

- There are large uncertainties in ground-based radar observation and their error characterization (can be 100% error in Z_{DR} and K_{DP})
- There are uncertainties in radar observation operators (can be 10dB error in Z_H). A set of accurate and efficient radar operators is needed and being developed
- Apply the new operators to observation-based retrieval, showing the feasibility, and align with DA usage
- Simulated PRD from NWP model output and compared with the existing operators. Further test, enhancement and usage need to be explored
- The uncertainty in NWP model microphysics is still a major error source in DA use of PRD, comparison with real radar data is a way to reveal the deficiency and improve model physics.

Thank you!

Questions?