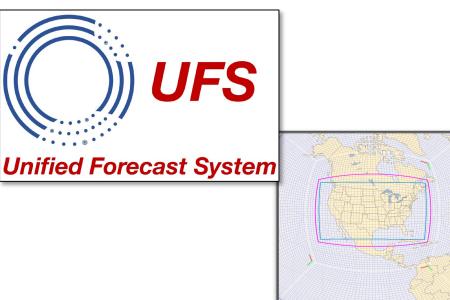


NCEP Modeling and Data Assimilation Plans

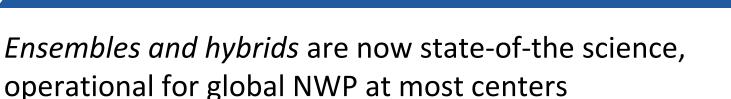
Jacob R. Carley NOAA/NCEP/Environmental Modeling Center

With acknowledgements to EMC colleagues Daryl Kleist, Geoff Manikin, and Logan Dawson for slides and content

and


NOAA/ESRL/Global Systems Division NOAA/National Severe Storms Laboratory NOAA/Geophysical Fluid Dynamics Laboratory

Outline


- Data assimilation
 - Algorithms
 - Obs
- Unification plans
 - Global
 - Convective-scale
- *If time* 3DRTMA

Only focusing on the atmosphere in this talk!

Current Status of Data Assimilation

- Regional systems leverage global EnKF information (at NCEP)
- Direct connection to ensemble prediction systems
- NCEP has largely pursued adjoint-free developments
 - For 4D, implementation of *hybrid 4DEnVar* for GDAS/GFS
 - This is the starting point for FV3-GFS

NOA

TMENT OF

Data Assimilation \rightarrow Some Grand Challenges

- Through workshops, the following "Grand Challenges" have been identified:
 - Coupled assimilation across earth system
 - Multi-scale DA across temporal and spatial scales (from convective to global)
 - Increase in volume and types of observations (radar, hyperspectral sounders, crowd sourced)
 - Representation of system uncertainty & model error, including for the coupled system
 - Non-Gaussianity and nonlinearity in errors (background, observation, and model)
- Must consider data assimilation problems within context of future HPC
- Improve use of current observing system
 - E.g. satellite and radar data (radial wind, dual pol variables, etc.)
- Data Latency \rightarrow data need to arrive in time

Data Assimilation Moving Forward

- Unified, coupled data assimilation for unified, coupled modeling approach (seamless)
 - Bridging gaps from nowcasting, Warn-on-Forecast, convective scale, large scale
- Targeted research around grand challenge areas
- Invest in facilitating infrastructure such as Joint Effort for Data Assimilation Integration (JEDI)
- Better use of current obs and prepare for new generation of measurements
- Short term: Focused efforts on Hybrid/EnVar @ global and CAM
 - Draft test plan for our own inter-comparison between Hybrid 4DEnVar and Hybrid 4DVar (with FV3 TL/AD)
 - Scale dependent hybrids (weights, localization), shifting/lagging, multi-resolution
 - CAM DA is a multiscale issue and requires development!
- **Longer term:** Dealing with non-Gaussianity and nonlinearity more directly

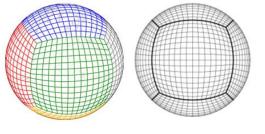
Unification Efforts

8

- **FV3GFS**, transition of the Global Forecast System to the FV3 dynamical core, is the first step toward implementing NGGPS
 - *Going into operations with GFS v15* Early 2019

- In 2016, the GFDL finite-volume cubed-sphere (FV3) dynamical core was selected to be • the cornerstone of future NCEP modeling efforts
- Allows NCEP to focus development on a **single system**

Move toward the **Unified Forecast System**


Initial work focused on developing the **Next-Generation** • **Global Prediction System (NGGPS)**

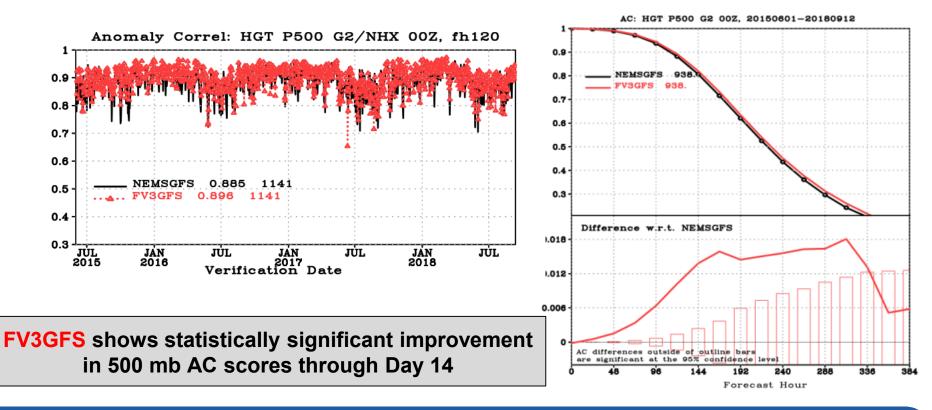
Simplifying the Production Suite UFS

•

Global

Configuration for FV3GFSv1 (GFSv15)

- FV3GFS C768 (~13km deterministic) and C384 (~25km) EnKF members
- 64 levels and 0.2 hPa model top
- Replaced the spectral model core with the FV3 dynamical core
- Largely uses GFS physics package
 - *Except* Upgraded to use the GFDL microphysics scheme


Will be implemented in early 2019 as GFSv15

NOA

TMENT OF

FV3GFS Highlights: 500 mb Stats

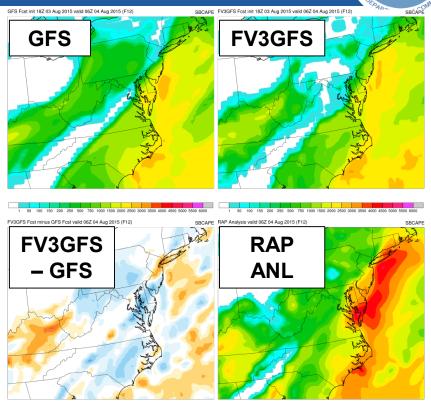
Thanks to Logan Dawson for material this slide

ND ATMOSP

NOAA

TMENT OF

Some FV3GFS Highlights

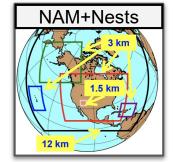

- Improvements:
 - FV3GFS provides some improvements to tropical cyclone forecasts
 - Intense tropical cyclone deepening seen in GFS is not observed
 - FV3GFS produces a much more physical TC pressure-wind relationship
 - Warm season diurnal cycle of precipitation is improved
 - FV3GFS can match or exceed GFS performance on high-impact cases
- Areas Needing More Work:
 - Atlantic TC track forecasts are significantly degraded on Days 6 and 7
 - **Precipitation appears smoother over terrain** in the FV3GFS

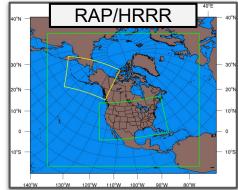
Beyond FV3GFS: NGGPSv1

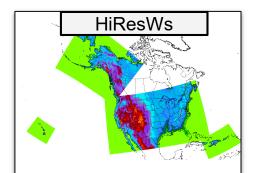
- FV3GFS is a step in the right direction and lays the foundation for NGGPS and UFS
- NGGPSv1 will aim to make significant advances in global NWP
 - Will look to overhaul entire physics suite
 - o Additional DA advancements
 - Potentially increase vertical resolution
- Will target common GFS issues such as **QPF** distribution in East Coast winter storms and over-mixing in PBL/thermodynamic profiles (for inversions, instability, etc.)

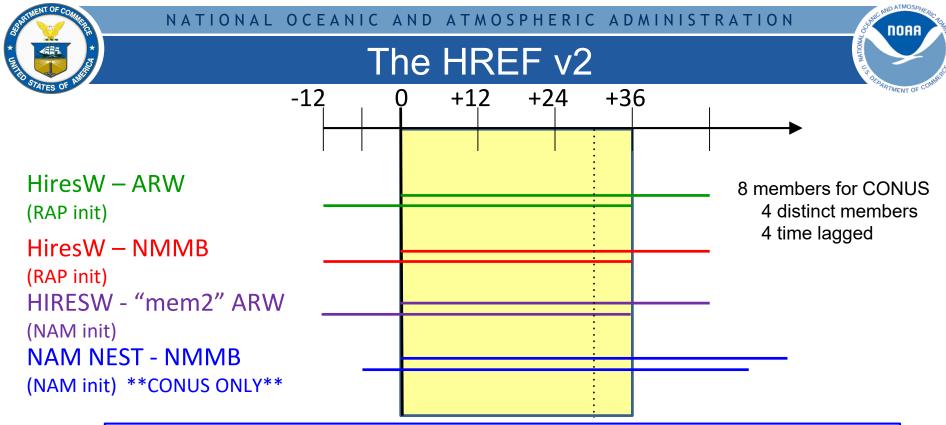
Goal is to implement NGGPSv1 in FY2021

Thanks to Logan Dawson for material this slide




CAM

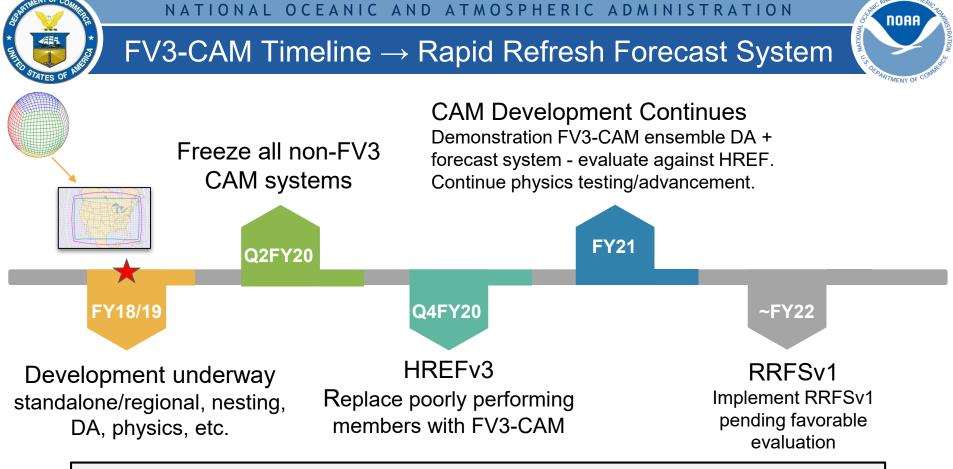



Current Status - Quite a bit

- Cover CONUS + OCONUS in a large variety of capacities
- NAM + Nests
- HRRR CONUS and Alaska
- HiRes Windows
 - ARW and NMMB members for each domain
- Much of this has been consolidated in the HREF
 - <u>High Resolution Ensemble Forecast system</u>
 - \circ $\,$ Motivated by the successes of the SSEO from SPC $\,$

<u>2018 HWT results</u>: HREF rated higher than other formally constructed CAM ensembles for severe weather guidance in subjective evaluations

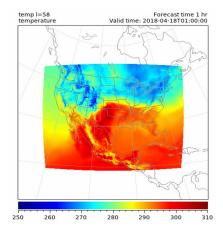
*Covers CONUS, Alaska, Hawaii, and Puerto Rico


Thanks to Matthew Pyle and Israel Jirak for the material on this slide

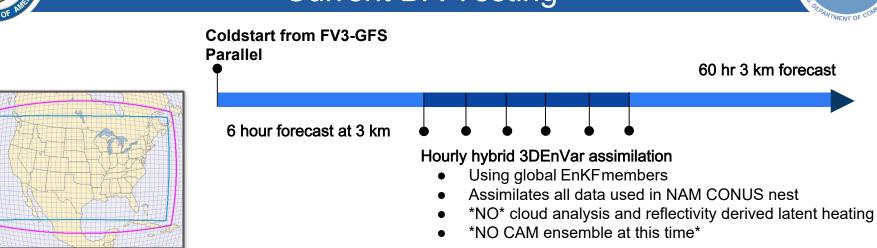
What's Next?

- NAM was frozen at version 4 (March 2017)
- HiRes Window systems are currently frozen
- RAP/HRRR has one more upgrade scheduled ~FY20
- The HREF was a natural step forward in aggregating much of the CAM output into an ensemble
 - But the underlying components of HREF are frozen or about to be - <u>so what's next</u>?

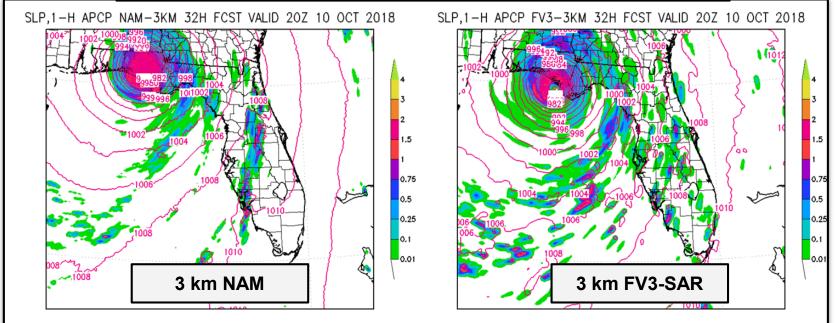
<u>Rapid Refresh Forecast System</u> \rightarrow To replace HREF, HRRR, NAM + nests, HiResWs


Timeline may be revised as development matures/progresses

Highlights \rightarrow <u>Standalone</u> <u>Alone</u> <u>Regional</u>


- FV3 is a global model with a nest capability
- Need a standalone grid option for CAM applications
- Why?
 - Extra resources are not needed for a global parent
 - Rapid updates in DA are much more feasible
- Obvious potential drawback
 - Boundary data from an external forecast cannot be as accurate as those provided by a parent to a nest every timestep during the integration
- Recent tests show standalone is 2x faster!

Current DA Testing


- The GSI system has been developed to interface directly with the FV3 native grid for a tile or nest input
- Configuration similar to 3 km NAM CONUS nest
- Very much in experimental/sandbox testing mode

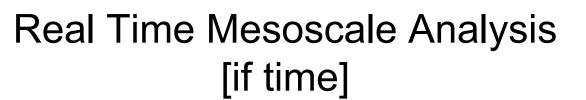
NOA

Current DA Testing

32h Forecasts of Hurricane Michael

Example \rightarrow meant to demonstrate progress on key components

NOAF

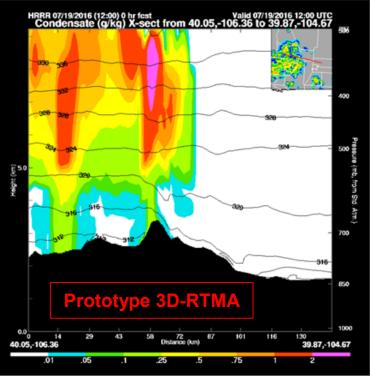

Revisiting the CAM Timeline

- RAPv5/HRRRv4 dev and final implementation
 - Now to Q2 FY20
- Transition work of existing Meso/CAM capabilities to FV3-CAM
 - Now to Q4 FY20
 - HREFv3
- Rapid Refresh Forecast System [RRFS]
 - Q4 FY20 to ~FY22
 - Rapid update, hybrid EnVar DA and forecast system
 - Replaces NAM/NAM nests/RAP/HRRR
- EMC/GSD/NSSL/GFDL/DTC/etc. collaboration!

NOA

TMENT OF

ND ATMOSP


NOAA

RTMENT OF

3D Real Time Mesoscale Analysis

- 3 Year Plan to Develop 3D-RTMA
 - With sub-hourly updates
 - CONUS + Alaska
- JTTI + FAA funded joint development effort between EMC + ESRL/GSD
- Real time, rapid updated analysis of 3D atmospheric fields
 - Severe and aviation weather parameters
 - Analysis of hydrometeor and cloud fields
- Challenges
 - Latency, analysis error/uncertainty

Thanks to ESRL/GSD for this figure

Summary

- Progress is picking up very quickly
- DA:
 - Short term: Hybrids/EnVars
 - Longer term: Dealing with non-Gaussianity and nonlinearity more directly
 - Challenges: Multiscale DA, coupled DA, etc.
- Global:
 - FV3 dynamic core implementation in early 2019
 - Physics and increased vertical resolution in 2021
- CAM:
 - Rapid Refresh Forecast System ~2022
 - Challenge: Effective, 'good' spread from *single core* CAM ensemble? etc.
- Thanks! Questions?

Contact: jacob.carley@noaa.gov