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Motivation and Outline

• Satellite data assimilation is a big topic!

• Satellite observations provide critical information over the entire globe

• Talk will focus on topics where significant efforts are still required to 
fully utilize the information content in satellite observations

• All-sky observations sensitive to clouds and water vapor

• Atmospheric motion vectors

• Land surface variables (soil moisture)



All-Sky Satellite Brightness Temperatures

• Focus has been primarily on all-sky microwave observations within the 
operational community, but more attention is being directed toward the 
assimilation of all-sky infrared observations

• Uncertainties and errors in the assimilation of all-sky observations

• NWP model errors (biases, timing and placement of clouds)

• Forward radiative transfer model assumptions

• How to handle observation errors?

• How to handle bias corrections?



Radiative Transfer Model Errors and Uncertainties

• Significant progress in recent years such that it is now possible to work 
on all-sky data assimilation activities

• Cloud, precipitation, and aerosol single-scattering properties

• Function of particle size, shape, composition, and roughness

• Errors are more important for some channels than for others, and 
also depend upon the cloud scene

• Inconsistencies between assumptions made in the NWP cloud 
microphysics scheme and the lookup tables used by the RTM

• Errors are smaller for liquid droplets and largest for ice particles 
(up to several degrees)

Courtesy of Tom Greenwald (CIMSS)



Radiative Transfer Model Errors and Uncertainties

• Plane-parallel assumption

• Effects are spatial resolution dependent – a few K for larger 
resolutions, but can be in excess of 10-20 K at high spatial 
resolutions

• Most important for high-resolution model domains where parallax 
affects can lead to large displacement errors

• Strong error correlations between different channels need to be 
accounted for when assimilating observations from multiple channels

• Largest correlations generally between channels that have the 
most scattering

Courtesy of Tom Greenwald (CIMSS)



Representing Clouds and Precipitation in Models 

Courtesy of Alan Geer (ECMWF)

Observations

ECMWF FG

Why such large errors?

• Limited predictability of 
clouds and precipitation, 
particularly in convective 
situations

• Accuracy of the model’s 
cloud and precipitation 
parameterization

• Accuracy of the 
observation operator 
(radiative transfer 
simulations)



Mean of observed and FG cloud

α=0.5 HBHT ≈ R

HBHT << R

α=0.0 HBHT >> R

Symmetric Observation Error Model

Courtesy of Alan Geer (ECMWF)

• Use a variable obs
error to account for 
uncertainty in the first 
guess departures

• Symmetric cloud 
amount has been 
shown to work well

• Smallest standard 
deviations where both 
observations and model 
background are clear or 
cloudy

Standard deviation of FG departures = sqrt(HBHT + R)     [K]

Observation error 
model with α=1

• Okamoto et al. (2014) and Harnisch et al. (2016) have developed 
similar observation error models for infrared brightness temperatures



If you can describe 
the observation 

error correctly, and 
the observations are 

unbiased, you can 
assimilate them

EUMETSAT-AMS Vienna 2013 Slide 8

Observations ECMWF FG

MHS 183±3 GHz 
adaptive 

observation error
from a “symmetric 

error model”

Symmetric Observation Error Model

Courtesy of Alan Geer (ECMWF)



Nonlinear Bias Correction Method

• Linear bias corrections have been shown to work well for clear-sky 
satellite observations that have Gaussian error characteristics

• Nonlinear error dependencies are more likely to occur when cloudy 
observations are assimilated

• Complex nonlinear cloud processes in the NWP model

• Errors in the forward radiative transfer model used to compute the 
model-equivalent brightness temperatures

• Desirable to develop bias correction methods that can remove both the 
linear and nonlinear bias components from the observation departures

• Remove linear and nonlinear conditional biases from all-sky satellite 
observations using a Taylor series expansion of the OMB departures

Otkin et al. (2018; MWR)



Observed 6.2 µm Brightness Temperature Predictor

• Results evaluated for 
original, 0th (constant), 1st

(linear), 2nd (quadratic), 
and 3rd (cubic) order 
Taylor series expansions

• Purple line shows mean 
bias of the distribution 

• Short black lines show 
conditional bias in each 
vertical column

• Used to assess how the 
bias varies as a function 
of the predictor value

• Each error distribution (except for the original) has zero overall bias; however, 
the conditional biases strongly vary as a function of the predictor value



Observed 6.2 µm Brightness Temperature Predictor

• Nonlinear conditional 
bias error pattern in the 
original distribution

• Constant and linear BC 
terms unable to remove 
all of the conditional bias

• Asymmetric arch shape 
in the conditional biases 
after 1st order BC, which 
is removed after applying 
the 2nd order BC

• Most of the remaining 
bias is removed after the 
3rd order BC is applied

• Though each departure distribution has zero overall bias, the conditional biases 
are much smaller when using higher order, nonlinear bias correction terms



Atmospheric Motion Vectors (AMVs)

• AMVs derived from infrared brightness temperatures have long been an 
important source of information for some data assimilation systems

• Upgraded capabilities on modern sensors (GOES-16 ABI) such as 
more frequent scanning, higher spatial resolution, and improvements in 
signal quality all translate to enhanced AMV quality and capabilities

• Prudent to seek optimal methods to fully exploit information content of 
enhanced AMVs in high-impact weather events where high resolution 
observations are needed to resolve small-scale features

• Retrieving AMVs in mesoscale flow environments is challenging, but 
these are often dynamic regions where high-resolution data assimilation 
systems require more information

Courtesy of Chris Velden (CIMSS)



Impact of New Retrieval Methods – Hurricane Maria

Baseline Algorithm Enhanced Algorithm

• Baseline image is similar to what is used in current operational DA systems

• Much denser retrievals with the enhanced algorithm

• Could be very useful for high-resolution assimilation systems

Courtesy of Chris Velden (CIMSS)
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Soil Moisture Assimilation

• Challenging topic because the land 
surface has traditionally been viewed as 
a sink within model and DA system

• Several sensors (SMAP, SMOS, etc.) 
provide useful information about topsoil 
moisture over the entire globe, albeit 
with coarse spatial resolution

• Soil moisture impacts surface energy 
flux partitioning (latent, sensible heat), 
which then impacts planetary boundary 
layer growth

• Can lead to changes in atmospheric 
stability and convective cloud growth

Courtesy of Sujay Kumar (NASA)
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Impact of Soil Moisture Assimilation on Land-Atmos Coupling

Courtesy of Sujay Kumar (NASA)

• This example 
illustrates how 
changes in soil 
moisture lead to 
changes in the 
evaporative 
fraction and then 
to changes in the 
PBL height and 2-m 
temperatures



Thank you for your attention!
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