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Advances of EnVar hybrid DA
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Active R&D and 
operational 
implementation for 
convective scale NWP

2000

2010

Development of theory

Research with simple 
model and simulated data

System development for 
real NWP model and test 
real data

Operational  
implementation at NWP 
centers for global NWP, US 
NWS, Env. Canada, US 
Navy, UK Met, ECMWF

Theory/algorithm development

• Combining static and ensemble 
covariance in variational 
framework (Hamill and Snyder 
2000) 

• Extended control variable (ECV) 
method (Lorenc 2003; Wang et al. 
2007b, 2008a; Wang 2010, etc.)

• Proved equivalence of ECV to 
direct combination of static and 
ensemble covariances (Wang et 
al. 2007b) 

• 4D extension (Tian et al. 2008; Liu 
2008; Buehner 2010)
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Active R&D and 
operational 
implementation for 
convective scale NWP

2000

2010

Development of theory

Research with simple 
model and simulated data

System development for 
real NWP model and test 
with real data

Operational  
implementation at NWP 
centers for global NWP, US 
NWS, Env. Canada, US 
Navy, UK Met, ECMWF

Simple model studies: e.g.
Zupanski 2005
Wang et al 2007a, 2009

Early development of EnVar for real 
regional NWP models: 
Wang et al. 2008ab
Wang 2011
Li* et al. 2012
Zhang and Zhang 2012

Early development of EnVar for real 
global model: 
Buehner 2005
Buehner et al. 2010
Bishop and Hodyss 2011
Wang et al. 2013

These studies show hybrid 
combines the best aspects of EnKF
and Var ( summarized in Wang 2010)
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Active R&D and 
operational 
implementation for 
convective scale NWP

2000

2010

Development of theory

Research with simple 
model and simulated data

System development for 
real NWP model and test 
real data

Operational  
implementation at NWP 
centers for global NWP, US 
NWS, Env. Canada, US 
Navy, UK Met, ECMWF

E,g.
US NWS
Wang 2010
Wang et al. 2013 (with Parrish, 
Kleist, Whitaker)
Wang and Lei 2014
Kleist and Ide 2015

US Navy
Kuhl et al 2013

Env. Canada
Buehner et al. 2010ab

UK Met
Clayton et al. 2013

etc
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Active R&D and 
operational 
implementation for 
convective scale NWP

2000

2010

Development of theory

Research with simple 
model and simulated data

System development for 
real NWP model and test 
real data

Operational  
implementation at NWP 
centers for global NWP, US 
NWS, Env. Canada, US 
Navy, UK Met, ECMWF

Advances of GSI EnVar for convective 
scales over CONUS
• Develop a algorithm to enable direct 

assimilation of radar reflectivity for GSI 
EnVar (Wang* and Wang 2017)

• Demonstration for 3 convective scale 
applications HRRR, NAM-CONUS, WoF
(Wang* and Wang 2017, Wang* et al. 
2018, Duda* et al. 2018, Wang* and 
Wang 2018ab)

• GSI EnVar for sub-kilometer DA (Wang* 
and Wang 2018a)

• Extend static covariance for convective 
scale EnVar hybrid (Wang* and Wang 
2018b)

Work based on other systems: Li* et al. 
2012, Caron et al, 2018, Kong et al. 2018 
and Gao et al. 2016
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Active R&D and 
operational 
implementation for 
convective scale NWP
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2010

Development of theory

Research with simple 
model and simulated data

System development for 
real NWP model and test 
real data

Operational  
implementation at NWP 
centers for global NWP, US 
NWS, Env. Canada, US 
Navy, UK Met, ECMWF

GSI EnVar for convection allowing 
hurricane prediction
• Developed fully cycled GSI EnVar

DA system for US operational 
convection allowing hurricane 
prediction system HWRF. 

• Lu*, Wang, Tong and Tallapragada, 
2017, MWR

• Lu*, Wang, Li*, Tong, Ma, 2016, 
QJRMS

• Operational implementation for 
HWRF since summer 2017

• Improve the assimilation and study 
the impact of variety in-situ/remote 
sensing inner core observations 
(Lu* and Wang 2018a)

• Reveal model physics errors (Lu* 
and Wang 2018b)



An example of operational implementation of 
EnVar for global NWP
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 GSI-based 3DEnVar and 4DEnVar hybrid data assimilation system was
operationally implemented for GFS at US NCEP in 2012 and 2016. Significant
improvement was found for global analysis and forecasts (Wang et al. 2013; Wang
and Lei* 2014; Kleist and Ide 2015ab) .

Non-linear
model integration 4DEnVar 3DEnVar

Example from Wang and Lei* 2014, MWR 
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• Require unique observation operators that are often complex and nonlinear (e.g., 
reflectivity, Dual pol radar variables, cloudy radiances)

• Both prior (e.g. hydrometeors) and observation errors are highly non-Gaussian

• Accurate cross-variable covariance is especially important 

• Balance assumption in covariance for large scales do not fit any more

• Heavily rely on quality of numerical models (microphysics schemes, PBL schemes, 
etc.) – treatment of model errors is critical

• Observations can be in much  higher spatial resolution than the typical NWP model 
and in much higher temporal resolution than typical DA frequency. 

• Systems shorter lived and with shorter predictability

• Convective scale prediction is a multi-scale problem, requiring an accurate estimate 
of both the convective scale details and the supporting mesoscale/synoptic scale 
environment.

Challenges for convective scale data 
assimilation



Direct assimilation of radar reflectivity in GSI EnVar and  
demonstration in WoF and HRRR/NAM applications   
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GSI-based 3/4DEnVar Hybrid

HRRR (<=18h)
Updated hourly

WoF (<=1hr)
e.g. tornadic

supercell

NAM CONUS 
(<=60h)

Updated 6-hourly

Add direct 
radar DA 
capability



Issue with TL of nonlinear reflectivity operator in EnVar
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Wang* and Wang 2017, MWR, 145,  1447- 1471

H(qr, qs, qg) = ZdB = 10logZe

Ze = Zr + Zs + Zg

10 1.75
g gZ 4.33 10 (ρq )= ×

• Nonlinear radar reflectivity operator

-1( )o
oJ ′′∆ = −T T

a D H R Hx y

• GSI-based EnVar cost function (Wang 2010, MWR)
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Wang* and Wang 2017, MWR

Issue with TL of nonlinear reflectivity operator in EnVar

 When hydrometeor mixing ratio is 
used as state variables, large 
values of TL of the nonlinear 
reflectivity associated with  the 
small hydrometeor mixing ratios 
lead to large differences of cost 
function gradients, which 
prevents efficient convergence 
and therefore under-estimates 
the hydrometeor increments.

 Using logarithm of hydrometeor 
mixing ratio as state variable fixes 
this issue, but incurs additional 
issues.
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 However, it produces anomalously large hydrometeor 
increment partly due to the transform to and from the 
logarithmic space

Wang* and Wang 2017, MWR

• Use logarithm of hydrometeor mixing ratio as state variable 

Issue with TL of nonlinear reflectivity operator in EnVar
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Wang* and Wang 2017, MWR

Issue with TL of nonlinear reflectivity operator in EnVar

 The underestimation and 
overestimation of hydrometeor 
increments are exacerbated by the 
TL assumption of the nonlinear 
reflectivity operator itself.
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Wang* and Wang 2017, MWR

GSI-based EnVar without tangent linear (TL) and 
adjoint of the nonlinear reflectivity operator

• A method augmenting state variables by directly including reflectivity 
as state variable is proposed: 

• No reflectivity operator appears in cost function or 

• Gradient issues fixed
• In this method, no TL of the reflectivity operator explicitly exists in 

variational minimization.  Hydrometeor is related to reflectivity 
following the nonlinear relationship.



May 8th 2003 OKC Tornadic Supercell
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• An isolated supercell case that produced F-4 intensity 
tornadoes in Moore and Oklahoma City (OKC) during about 
2210—2240 UTC.

• Supercell maintained well beyond 2300 until about 0000 UTC. 

Path of the May 8, 2003 
Moore-South OKC Area 
Tornado

22:00 UTC 08 May
http://www.srh.noaa.gov



16

m/s m/s m/s

1 hour forecast: w and vorticity at 4km

New: extend state 
variable with 
reflectivity

Use log transform 
(q_hydrometeor) as 

state variable

Use 
q_hydrometeor as 

state variable

New:



Graupel (qg) analysis

(g/kg)

New:
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Implementation and experiment in HRRR/NAM like 
applications over CONUS

Wang * et al. 2018

1-hour

18 hour free forecast
18Z 19Z 00Z20Z 21Z 22Z 23Z

Conventional DA
Radar DA

{
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Domain:
• Resolution: 3 km
• Grid: 1621 X 1121 X 50
• Large CONUS domain in 
operational HRRR/NAM context

Observations:
• Conventional obs. are 

assimilated hourly for 6 
hours

• Radar data are assimilated 
sub-hourly/hourly

IC and LBC ensemble are 
provided by recentering GEFS 
(20) and SREF (20) 
perturbations to GFS-ctl



 Most operational system 
assimilating radar reflectivity 
uses empirical approach 
such as CA and diabatical
initialization (e.g. HRRR, Hu 
et al. 2006)

 EnVar overall verifies much 
better than CA.

 CA does provide some 
benefit over not assimilating 
radar reflectivity at all, 
however, but only a few 
hours’ worth.

 Collaborating with GSD and 
EMC to transition the radar 
DA development into 
operations through HRRRv4 
in 2020 19

GSI-EnVar direct reflectivity assimilation vs cloud 
analysis (CA)

Duda*, Wang, Wang*, Carley, 2018, MWR

20dBz

30dBz

40dBz

0.254mm

2.54mm

12.7mm



GSI EnVar at sub-kilometer resolution

20Kurdzo et al. 2015 from David Bodine (ARRC)
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• State of the art radar provide measurements in very high resolution.

• Early study has demonstrated the need for ~100m possibly ~10’s m grid spacing 
to fully resolve convective motions and explicit forecasting of tornado like vortices 
(e.g. Bryan et al. 2003). 

• Many early studies simulate or predict tornado or tornado like vortices (TLV) by 
running sub-km model.

• Is there a need to run DA at finer resolution (<=1km)? What is the impact of 
initializing with a finer resolution analysis (dx<1km)? Is there a cost effective way 
to do this?

• Given the large expense of running all ensemble members at sub-kilometers in 
EnVar, the dual resolution EnVar is further extended in GSI where the analysis 
is produced at sub-kilometer (e.g., 500m) whereas the ingested ensemble is still 
at lower kilometer resolution (e.g., 2km). 

GSI-based dual resolution EnVar for sub-
kilometer analysis and prediction

Wang Y. *and X. Wang 2018a, MWR



Composite maximum sfc vorticity and 10-m 
wind improved by dual resolution EnVar

SR_2km DR_500m

s-1

SR_2km DR_500m

Uh max=41.4 m/s (EF1)Uh max=36.6 m/s (EF0)

Sfc
vorticity

10-m 
wind

• The predicted vorticity is 
enhanced after 20-min 
forecast in DR_500m. Its 
vorticity evolution is much 
more consistent with the 
reality than SR_2km.

• DR_500m is able to predict 
tornado strength sfc wind with 
longer duration and greater 
intensity (≥ EF1).

m/s

EF0 ≥29 m/s EF1 ≥38.4 m/s

Vorticity begins to 
decay at this time

22

May 8 
2003
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Vertical velocity (shaded) 
and vertical vorticity 
(contour) at 2 km AGL

Surface equivalent 
potential temperature 
(shaded), reflectivity (blue 
contour), rear flank gust 
front (RFGF; black thick 
line) 

• Stronger and broader midlevel downdraft (green box) in DR_500m (left) than 
SR_2km (right) over the rear-flank region.

• Stronger outflow (red box) surge trailing the RFGF in DR_500m than SR_2km.

DR@2km AGL SR_2km@2km AGL

What are the differences in the final analysis?



Extending static covariance for convective scales 
to treat background ensemble deficiency in GSI 

EnVar

24



Ensemble background deficiencies

• Ensemble background can be seriously deficit. For example, none of the
members have the storm where in reality there is. In this case, obs. will not be
used effectively to update the background since the background ensemble
spread is zero.

• Random additive perturbation method was proposed (Dowell et al. 2004).
However perturbations are not coherent among different variables and it does
not add e.g. hydrometeors perturbations 25

Obs.

Ensemble DA: 
initial ensemble down 
scaled from meso.     
ensemble

Wang* and Wang 2018b

DA cycling for May 8 2003 tornadic supercell



Static covariance further extended for convective 
scale hybrid EnVar: impact on DA cycling 

Wang* and Wang 2018b

26

Obs

PureEnVar

Dowell 
random 
noise

Hybrid 
EnVar
with 
Static B
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Obs

PureEnVar

Dowell 
random 
noise

Hybrid 
EnVar
with 
Static B

Static covariance further extended for 
convective sale hybrid EnVar: impact on 

forecasts 



Use GSI EnVar DA to identify model deficiencies: 
an example from convection allowing hurricane 

prediction

28



Continuously cycled, Dual-resolution, HWRF GSI hybrid 
DA system and its operational implementation in 2017

Lu*, Wang, Tong and Tallapragada 2017

The GSI based hybrid DA system is developed with the following capabilities: (1)
continuously cycling, (2) dual resolution, (3) 3DEnVar/4DEnVar, (4) assimilating 
all operational observations including TDR, HDOB, dropsonde, satellite radiances, 
etc., (5) integrated with VI  (VR+VM)(Lu et al. 2017).
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a) MSLP
Cycle 10 @ 2014091400 UTC

c) MSLP
Cycle 11 @ 2014091406 UTC

• Improved analysis 
led to the 
improvements in the 
intensity forecasts 
through alleviation of 
the “spin down” issue 
presented in 
operational HWRF.

Alleviation of the “spin-down” issue relative to 
operational HWRF

b) Vmax
Cycle 10 @ 2014091400 UTC

d) Vmax
Cycle 11 @ 2014091406 UTC

Edouard (2014)
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● Back storm is large and weak as compared with observations.
● VM (Vortex Modification scheme) produces spurious strong and large storms.
● Inner core structures are much improved upon the background through DA.

Use EnVar DA to reveal model physics errors
Lu* and Wang 2018a

Patricia 2015



• Spin-down occurred in the experiments where inner-core wind structures are well 
captured in the analysis through DA. 

• Background and VM analyses do not show spin-down.

DA vs VM Intensity Forecasts

32



Why TC spin-down with the more realistic DA analyses?
-- Secondary Circulation for the first hour

Downdraft greater than 6m/s in the eye !

33



Bryan and Rotunno, 2009

 The middle-level sub-gradient is very likely a direct response to the boundary layer super-
gradient (Stern and Nolan, 2011). The oscillation roots in the PBL. 

 Unbalanced flow effects have a nonnegligible effect on intensity in some cases and stronger 
radial diffusion damps the unbalanced flow effects (Bryan and Rotunno, 2009).

Why TC spin-down with the more realistic DA analyses?
Model physics issue 1: Horizontal diffusion too strong

34



Why TC spin-down with the more realistic DA analyses?
Model physics issue 2: Lack of Mixing in HWRF PBL

35

 In the original HWRF PBL scheme, the discontinuity of turbulent mixing at the 
boundary layer top tends to constrain the communication of moisture and heat 
below and above the boundary layer top.

 Turbulent layer mixing (Zhu et al. 2016) allows more moisture and heat to be 
transported to the free atmosphere, facilitating establishing secondary 
circulation.

HWRF 
PBL

Turbulent 
layer 
scheme



• Reducing the horizontal diffusion in DA-Co shows improved MSLP forecast and 
apparent alleviation in the Vmax spin-down. 

• Further using a modified turbulent mixing scheme (DA-CoTb) shows significant 
improvement in both Vmax, MSLP and track forecasts.

Advanced DA needs to be accompanied by advanced 
model Physics

36
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 Multiscale data assimilation

 Treat nonlinearity and non-gaussianity in high-dimensional system 
 Parametric or non-parametric approach

 Accurate representation of the background errors 
 Advancing methods to treat sampling errors and represent model errors 

 Observation operator development for new instruments. Accurate 
representation of the observation errors and their correlation

 Reveal, correct and quantify model errors using DA.

 Big data assimilation (huge amount of remote sensing and in-situ obs., 
increased model resolution and increased # of ensemble members)

Remaining challenges of data 
assimilation for NWP

Requires collaboration among data assimilation (DA) 
developers, model physics developers, observation/instrument 
experts and  data/machine learning scientists
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 VTSM by applying VTS to the ensemble members
 VTSP by applying VTS to the ensemble perturbations.

VTS method – a cost effective method to increase 
background ensemble size in 4DEnVar

Huang* and Wang 2018, MWR

 VTS increases ensemble size by shifting the ensembles valid around the 
analysis time to the analysis time.



Evaluation on TC track forecasts

39

 All VTS experiments show
smaller track errors than
ENS80.

 VTSM shows smaller errors 
with larger lagging time 
interval, while VTSP is not 
very sensitive to the lagging 
time interval.

 VTSP performs similarly to 
ENS240. VTSM240H3 even
produces smaller track errors
than ENS240.
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