Tipping Points in Weather
Prediction

Extreme sensitivity of forecasts to the atmospheric state and what to do about it




“Ordinary” Forecasts
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Not what we are talking about



(a) GOES-East IR Image (0000 UTC 20 October 2012)

Error growth is localized
and “feature” based
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Extreme Sensitivity

* Indicative of strong non-linearity and
extreme error growth

e Often applied to the climate system,
but is more general

* Deterministic prediction is difficult
(impossible?) when system is in a
state of extreme sensitivity

Palmer

1999, ECMWF



Types of Thresholds

Cyclone Tracks (X,Y

Convective
initiation (T)
time ——
Transition to very uncertain state Transition to separated states (e.g. clusters)

—

Tropical Cyclone Formation

and Intensification (V);
Warm-front passage (T) Uncertain transition



Case 16, Wis and Bmin at Model Level 42 (Om AGL)
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Large trend means even if Bmin ~ 0, system may have
some predictability

35-dBZ contour at At = +1 hour



Deformation and Blocking

* tropical convection — mid-
latitude interaction

* hurricane motion
* Split flows and blocking

Torn et al., 2018: MWR [
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What can be done about extreme sensitivity?

* Relate ensemble spread to features to simplify interpretation

* Already done informally in forecasting
 Machine learning (e.g. Gagne et al. 2017, W&F)

* Focused observations for specific sensitivities
» example: TC position relative to axis of contraction (in deformation)

* Predict the predictability: quantify forecast confidence C{(t)

Hypothesis: Even with extreme sensitivity, the time of a
marked change in confidence may be predicted, even if the
outcome itself cannot be.



Very Uncertain Forecasts: Predicting Predictability

Emergency Manager (EM) wants 80 !
forecast at day 7: Will there be a —SH5
major hurricane (MH)? | — SH6

P(MH) ~ 0.35

V10 (m/s)
5

EM says that is not good enough to

make a decision. 20
When will EM know with 80% 0 l 1 ! ! ! I | | |
confidence about a MH at day 7? 0 24 48 72 96 120 144 168 192 216

simulation time (h)

If you say ‘Day €', you are fired. Tao and Zhang, 2015: JAMES



m/s)

V10 (

Two issues:
1. Uncertainty for a given environment
2. Uncertainty about the environment : . . : . . .
P(MH, t=0) ~ 0.35 (at 168 h) 0 24 48 72 96 120 144 168 192 216
simulation time (h)

P(red)=P(MH)~0.7
P(green+blue)=P(no MH)~0.3

prior 48 h

* Now, consider the full distribution
of possible observations

* Then consider observations

V10—  obs vio— preceding this time



Mesoscale Predictability Experiment

Dropsonde impact at 2013051912 (FO24)
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Trapp et al., 2015: BAMS

. One could ask: Given the actual
=  observing system, and its

=« errors, when will | know more

= certainly the rainfall in the box?

Drops here will have the largest influence on rainfall 12 h later in box



Summary

Confidence

* Extreme sensitivity => extreme uncertainty

* Predicting “confidence” in a scenario time

* Advances: Ensemble techniques, ensemble sensitivity (or adjoint
sensitivity)

* Issues: Does this make any sense? More formalism

* Challenges
* Relate ensemble variation to “features”
e Requires clustering in ensemble outcomes
* Challenges: coupling machine learning and data assimilation

* Requires reduced model error; focused observations may help
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