Tipping Points in Weather Prediction

Extreme sensitivity of forecasts to the atmospheric state and what to do about it

"Ordinary" Forecasts

Not what we are talking about

Error growth is localized and "feature" based

10000 12000 14000 16000 18000 20000

GOES-East IR Image (0000 UTC 20 October 2012)

4000

2000

6000

8000

Extreme Sensitivity

- Indicative of strong non-linearity and extreme error growth
- Often applied to the climate system, but is more general
- Deterministic prediction is difficult (impossible?) when system is in a state of extreme sensitivity

Transition to very uncertain state

Transition to separated states (e.g. clusters)

Tropical Cyclone Formation and Intensification (V); Uncertain transition Warm-front passage (T)

Convection Initiation

Bmin ~ 0 is "tipping point"

$$\frac{\partial B}{\partial t}\bigg|_{p_B} = \frac{\partial T_{\rm vp}(p_B)}{\partial t} - \frac{\partial T_{\rm ve}(p_B)}{\partial t}.$$

Large trend means even if Bmin ~ 0, system may have some predictability

Deformation and Blocking

- tropical convection midlatitude interaction
- hurricane motion
- Split flows and blocking

What can be done about extreme sensitivity?

- Relate ensemble spread to features to simplify interpretation
 - Already done informally in forecasting
 - Machine learning (e.g. Gagne et al. 2017, W&F)
- Focused observations for specific sensitivities
 - example: TC position relative to axis of contraction (in deformation)
- Predict the predictability: quantify forecast confidence C(t)

Hypothesis: Even with extreme sensitivity, the time of a marked change in confidence may be predicted, even if the outcome itself cannot be.

Very Uncertain Forecasts: Predicting Predictability

Emergency Manager (EM) wants forecast at day 7: Will there be a major hurricane (MH)?

P(MH) ~ 0.35

EM says that is not good enough to make a decision.

When will EM know with 80% confidence about a MH at day 7?

If you say 'Day 6', you are fired.

Tao and Zhang, 2015: JAMES

Mesoscale Predictability Experiment

One could ask: Given the actual observing system, and its errors, when will I know more certainly the rainfall in the box?

Drops here will have the largest influence on rainfall 12 h later in box

Summary

- Extreme sensitivity => extreme uncertainty
- Predicting "confidence" in a scenario
- Advances: Ensemble techniques, ensemble sensitivity (or adjoint sensitivity)
- Issues: Does this make any sense? More formalism
- Challenges
 - Relate ensemble variation to "features"
 - Requires clustering in ensemble outcomes
 - Challenges: coupling machine learning and data assimilation
- Requires reduced model error; focused observations may help

