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Initial-Condition Errors: Scale Sensitivities

 Is upscale error growth important?
 (even if  it is not exactly a “spectral cascade”)

 Given initial errors of  fixed absolute magnitude, does 
their horizontal scale influence predictability? 
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Consider two different questions



Lorenz’s 1969 Answer: Experiments A & B

Modified spectral turbulence model (Durran and Gingrich 2014)

“Evidently when the initial error is small enough, its spectrum has little effect upon the 
range of  predictability.”

Implications of  Experiment B were largely overlooked.
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Small relative errors in the large-scales can 
destroy predictability.
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Influence of  Scale: Lorenz Model

 Small relative errors in the large scales rapidly 
propagate down to the smallest resolved scale. 

 Those small-scale errors subsequently propagate back 
upscale as if  they had simply originated in the small 
scales.
 Upscale growth is responsible for the finite limit to intrinsic predictability

 No easy way to diagnose the scale of  the “original 
errors”.
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How relevant is the Lorenz model?

 It does not include
 Baroclinic instability
 Deep convection
 Inhomogeneity and nonstationarity

 Nonlinear effects are incorporated only crudely.

 Incorrectly assumed k-5/3 slope for the background 
KE spectrum at large-scales.

 Deep Convection?
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Error Growth in Observed Convective 
Systems

 Four cases: both weakly and strongly forced systems
 24-hr control simulations
 WRF model, 2.5 km horizontal grid spacing
 GFS analysis for initial conditions
 Six ensemble simulations branch off  each control at hour 6

 Different background perturbations among ensemble members in 
the near-surface moisture field
 Monochromatic square wave in horizontal, random phase

 Small-scale ensemble: x & y wavelengths 20 km  (λ = 14 km)
 Large-scale ensemble: x & y wavelengths 200 km (λ = 140 km)

 Perturbation amplitude of  1% of control moisture field
 1-km e-folding decay scale away from the surface
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Synoptic 
Overview

October 2018CIMMS 8

• Sea-level pressure

• 500 hPa heights

• 500 hPa vertical 

velocity (contours)

Strong forcing Moderate forcing

Weak forcingWeak forcing



Control Simulations
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• Simulated composite 
reflectivity

• 12 hours after 
initialization from GFS

• Hour 6 in the 
ensembles

• 2.5 km horiz. 
resolution

Strong forcing Moderate forcing

Weak forcingWeak forcing



Pertubation KE Growth: April 2017 Case
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Fractions Skill Score

October 2018CIMMS 11

Strong forcing Moderate forcing

Weak forcingWeak forcing

 1 mm/hr precip
threshold

 5, 20, 80 km verification 
radii 

 Weak forcing: 14-km 
perturbations grow faster 
than 140-km 
perturbations



Influence of  Scale – Convective Systems

 Equal amplitude 1% humidity errors at 14 and 140 
km produce:
 Similar losses in predictability in strongly forced cases
 More rapid error growth in weakly forced cases

 Short-wavelength errors influence convective 
initiation
 Important in weakly forced cases

 Long-wavelength errors influence convective 
organization
 Important in strongly forced cases
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Implications for data assimilation on the 
mesoscale

 Characteristic velocities at wavelengths of  200-400 km 
are 5 times larger than those at 2-4 km.

 Equal improvements:  
(> 6-hr forecast)

from reducing IC errors at
2-4 km below 50%
200-400 km below 10%

(equal absolute errors in KE’)



Predictability and Microphysics
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Fine-scale rain gauge 
network across ridge



MM5 vs Rain Gauges
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Black: observations

Gray: MM5 forecast



MM5 vs Rain Gauges
WY 2005
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Black: observations

Gray: MM5 forecast



Predictability and “Physics”

Don’t test a family of  physics parameterizations in 
simulations using single deterministic initial 

condition!
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Another measure of  predictability

Fractions skill score 
(Roberts and Lean, MWR, 2008)
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Strong/Moderate
Forcing
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Synthetic radar reflectivity



Weak Forcing
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Synthetic radar reflectivity



Implications for data assimilation: I
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Parseval’s relation

KE in wavenumber band (k1,k2)



Implications for data assimilation: II
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• k-5/3 KE spectrum

• Ratio of  velocities in 200-400-km band to those in 2-4-
km band is 0.21

• Which is the easier goal?
Reduce errors at 200-400 km below 10%
Reduce errors at 2-4 km below 50%



Error saturation 
(KE’/KE) 
in layer 10 < z < 12 km
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Strong forcing Moderate forcing

Weak forcingWeak forcing

 Similar errors at 12 hr in 
all cases 

 Small-scale errors produce 
more saturation at 6 hr in 
the weakly forced cases
 More variation in CI
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