A semi-certain report about our certainly informative discussion about Uncertainty

The Lonely Hearts Club

a) Attributing Uncertainty

- Data denial experiments:
 - Systematically withhold datasets to examine effect on short-range ensemble sprea
 - Possibly use OSSE framework
 - Bias: which data most influence analysis increments?
- Retrievals: vary algorithmic parameters to determine impact on short-term spread
- Separate uncertainty in environment versus storm-scale: when does each dominate?
- Physics: sensitive parameters and components
 - Can simplify the model configurations for this purpose e.g., single column models: large ensembles
 - Scale dependence of parameterization errors
- Numerics in models: evaluate different numerical schemes compared with, e.g., physics uncertainty

b) What is hindering the improvement of PRACTICAL Predictability: Storm scale?

- Need for more observations
 - PBL profiles; improved mixing and entrainment estimates
 - Water vapor: pre-convective state
 - Model biases (hinder assimilation): better use of obs to reduce model biases
- Limited reforecast datasets
 - Computational expense and data storage problems
 - Need to include null events (e.g. failed storm development, TC formation)
- Lack of physical understanding
- Difficulty of assimilating (some types of) observations
 - Dual-polarization radar variables
 - Cloudy radiances
 - High time resolution: What is maximum update frequency?

b) What is hindering the improvement of PRACTICAL Predictability: Mesoscale?

- Lack of More PBL observations, including wind profiles
- Difficulty of assimilating all-sky radiances accurately
- Land surface
 - Better soil moisture observations are needed -- modulates convective initiation
 - More accurate Bowen ratios/flux partitioning
 - Coupled data assimilation: how much will this help?
- Additional water vapor measurements through the mid troposphere
- Identification of boundaries in wind, moisture, and temperature to aid in convective initiation forecasts: we have limited observations

c) What are the key sources of uncertainty and how can they be minimized? (Storm scale)

- Storm (county) scale
 - Microphysics (once a system exists!)
 - How to determine uncertainty? See "Attributing Uncertainty".
 - Verify how schemes work (dual-pol may help, but uses retrievals)
 - Improve ice nucleation through measurements of ice nucleii but how?
 - PBL (pre-storm)
 - Leverage high-resolution satellite data (e.g., GOES-16) to drive model forecasts of convective initiation?
- Mesoscale
 - Gaps in observations: is there hope for observational targeting?
 - Cheap solutions: modify current obs strategies
 - Sounding timing
 - Change scan strategies to fill data gaps (almost no cost!)
 - Better climatology to perform model evaluation of the boundary layer

d),e) What additional tools, observations, and resources are needed to address the problems above?

- Additional Observations
 - Measurements in precipitation systems (convection)
 - Temperature
 - microphysics: presence of mixed phase
 - dynamics measurements of w (or u,v and use continuity equation)
 - surface fluxes in high wind conditions (hurricane boundary layers unmanned aircraft)
 - microphysics (+connection with in situ), important for model evaluation
 - water vapor (yes, water vapor in convection)
 - Measurements in the environment
 - Stability and shear profiles for convective initiation, gravity wave propagation, and storm maintenance
 - Lowest 5–6 km most important for storm mode
 - lidar, VAD, AMVs (above the surface) can all help
 - Clever modification of operational observing system strategies
 - GOES-16 multi-channel radiance measurements for T, q in lower-mid tropopshere
 - CCN and IN concentration measurements: not clear how to do this

d),e) What additional tools, observations, and resources are needed to address the problems above?

- What do we do with the data?
 - Data assimilation
 - Rapid cycling for frequent observations
 - Use high-frequency satellite and radar in combination to continue feeding model DA systems
 - Characterize observational errors and uncertainties
 - Develop more accurate forward operators
 - Use improved error covariance models for convective-scale data assimilation
 - Use advanced DA systems for identifying model biases
 - Better depict forecast uncertainty,: object-based methods like machine learning
 - Assess value of current strategies: paintball plots, spaghetti plots, etc.
 - Disentangle space/timing errors from other types of forecast error. Need tools to do this better.
 - Identify scenarios using image processing techniques

Take-home Points

- Focus on short time scales: greatest potential to reduce uncertainties (errors), furthest from predictability limit
- Do things that are "easy" and "cheap" first
 - Better use of existing data to reduce model biases
 - Clever changes to operational observing strategies
 - Use a hierarchy of methods to trace uncertainty through obs-DA-fcst system