Predictability Breakout Group

Judith Berner, Forest Cannon, Chris Davis, Dale Durran, Berkley T. Gallo, Corey Potvin, Christopher Reidel, Glen Romine, Dan Yao, Man Zhang

a) What is hindering progress on predictability

- Next hour
 - Lack of 3D observations defining event and environment
 - Poor model physics
 - Limitations on data/assimilation
 - Corrections too large
 - Model transients too extreme on start up
- Next day

CIMMS

- Model limitations (physics)
- Data voids (e.g., west coast)
- Inadequate ensemble spread and reliability

a) What is hindering progress on predictability

- Multiday
 - Model physics (surface processes)
 - Errors from other regions (tropics/arctic)
 - Lack of consistent physics between regional and global scales

b) Key sources of uncertainty? How to reduced?

- Need to eliminate bias (physics)
 - Identify bias using cycling data assimilation systems
 - Emphasize observable quantities in parameterization schemes
 - Collect forecaster input to capture conditional biases

c) Additional tools, models, observations, to address these challenges.

Cycled data assimilation

CIMMS

- Ensemble sensitivity analysis (for IC errors)
- Addressing big biases in models via
 - Laboratory Cloud chambers for microphysics
 - Field projects targeting improved parameterizations (rather than more traditional process studies)

d) Limits to production of better quantitative forecasts.

- Better moisture observations
- Lack of history/climatology of extreme events
 - Do more reforecasting (CAM models)
- Accounting for conditional predictability
- Predicting predictability
- Inherent predictability
 - May be different for microphysics than dynamics

e) Improving representation of limiting processes

- Verifications are inadequate
 - For most forecast variables
 - For extreme events
- Make model physics processes verifiable
 - Regional variability of dominant processes
- Emphasize community-suite efforts for the improvement of physical parameterizations

f) Best way of illustrating uncertainties in forecasts.

- Cluster analysis
 - Weather
 - Hazards
- Provide skill scores relative to climatological skill thresholds
- Deterministic like representation of probabilistic concepts

f) Assessing IC errors propagating through forecasts.

- Ensemble/adjoint sensitivity analysis for IC errors
- Perfect model experiments (avoid specific biases)
 OSSEs
- Run small IC ensembles for any physics tests

g) What data can be assimilated to reduce uncertainty?

- Emphasize improving fields at 50-200 km scales with available datasets
- Assimilate underlying data, not products
- Quantify uncertainty in the obs
 - Measurement and sampling errors
 - Representation and conversion errors
 - Time/space dependence