Predicting Subseasonal Extreme Precipitation Events Across the United States

Jason C. Furtado, Ty Dickinson, and Michael Richman University of Oklahoma School of Meteorology CIWRO Workshop on S2S Prediction for High-Impact Weather Events ICER #1663840 7 October 2022

Prediction of Rainfall Extremes at Sub-Seasonal to Seasonal Periods

Storm ediction Center

PRES²**iP**

SOUTH CENTRAL

- 1. Define databases of S2S extreme events.
- 2. Quantify statistical and dynamical links between S2S extreme events and synoptic-scale and global scale precursors.
- 3. Improve capability to predict S2S extreme events.
- 4. Increase communication between research scientists and stakeholder communities.

SELETOP OF METEORO

S2S Extreme Precipitation Event Database

- Created in *Dickinson et al.* [2021] for 14-day events (also have 30-day events available).
 - Totals exceed 99th percentile, more than 7 days of above normal daily precipitation, have areal extent ≥ 200,000 km².
- Events clustered by region using *k*-means clustering.
- 1950 near present

Dickinson et al. [2021]

Downloadable database:

https://github.com/tydickinson29/PRES2iPpy/tree/master/pres2ippy/databases

Trends in 14-Day Extreme Precipitation Events

Prediction of Rainfall Extremes at Sub-Seasonal to Seasonal Periods

Storm ediction Center

PRES²**iP**

SOUTH CENTRAL

- 1. Define databases of S2S extreme events. \checkmark
- 2. Quantify statistical and dynamical links between S2S extreme events and synoptic-scale and global scale precursors.
- 3. Improve capability to predict S2S extreme events.
- 4. Increase communication between research scientists and stakeholder communities.

SELETOP OF METEORO

Toward An ML Approach for Forecasting 14-Day Extreme Precipitation Events

Tally: Six 1s and Three 0s Prediction: 1

Research Questions:

- 1. How well can a random forest approach classify days as being extreme or not extreme?
- 2. Which atmospheric variables (and where) are most important in classifying extreme versus non-extreme days?

Data

- ERA-5 reanalysis daily- 1.5° lat/lon grid. Linearly detrended.
- Predictors (7-day centered running mean):
 OPH Averaged [850, 300] hPa (*Lags 0, 7, 14*)
 Precipitable water (PWAT) (*Lag 0*) *u & v* winds Averaged [850, 300] hPa (*Lag 0*)
 SLP (*Lag 0*)
- **Predictand**: 1 (day is in an extreme event), 0 (it's not).
- Training: 1950-2000; Testing: 2001-2018

Workflow

- Domain: [20°, 80°] N; [160°, 310°] E
- 100 trees in forest
- Gini impurity criterion
- 10-fold cross-validation used for optimizing hyperparameters.

Critical Success Index (CSI)

0.01	A	Observed		
$CSI = \frac{1}{A + B + C}$		Yes	No	
Forecast	Yes	А	В	
	No	С	D	

Optimized Model Accuracies

	Region	Hits	False Alarms	Misses	CSI
Training	CWC	357	735	6	0.325
	СР	268	201	3	0.568
	ORV	320	281	3	0.530

- **CWC**: Lots of hits but a lot of false alarms
- **CP:** Opposite of CWC
- **ORV**: Similar to CP

	Region	Hits	False Alarms	Misses	CSI
<u>Festing</u>	CWC	34	311	22	0.093
	СР	7	67	51	0.056
	ORV	21	106	154	0.075

PRES²iP

Which Predictors are the Most Important?

RFS²iP

10

Lag 0 Geopotential Height Importance

14-Day Extreme Event Total Composites

Lag 0 Zonal Wind Importance

Take-Home Messages

- Our random forest model currently has some skill in differentiating 14-day extreme precipitation event and non-event days. Much more to interpret!
- <u>Most important features:</u> (1) Upstream trough (preceding and up to start date) / downstream ridge (develops during event); (2) Orientation (and strength) of the polar and subtropical jet streams.
- Currently testing a deep neural network to produce probabilistic forecasts for 14-day extreme precipitation events.

Research Group Website: https://ifurtado.org

APPLIED CLIMATE DYNAMICS GROUP

School of Meteorology, University of Oklahoma

520g

THANK YOU! <u>Email:</u> jfurtado@ou.edu