## OKLAHOMA NSF EPSCoR S<sup>3</sup>OK RESEARCH

## An overview of the S2S Focus Area Research Activities as part of the Oklahoma EPSCOR S3OK Project

Jeffrey Basara<sup>1,2</sup>, Jason Furtado<sup>1</sup>, Elinor Martin<sup>1</sup>, Joseph Ripberger<sup>3</sup>, Yuting Zhou<sup>4</sup>, Jordan Christian<sup>1</sup>, Benjamin Davis<sup>1</sup>, Benjamin Fellman<sup>1</sup>, Katherine Giannakopoulos<sup>1</sup>, Taylor Grace<sup>1</sup>, Ollie Millin<sup>1</sup>, Henry Olayiwola<sup>1</sup>, Bryony Puxley<sup>1</sup>, and Alyssa Woodward<sup>1</sup>

<sup>1</sup>School of Meteorology, University of Oklahoma
 <sup>2</sup>School of Civil Engineering and Environmental Science, University of Oklahoma
 <sup>3</sup>Department of Political Science, University of Oklahoma
 <sup>4</sup>Department of Geography, Oklahoma State University





# Socially Sustainable Solutions for Water, Carbon, and Infrastructure Resilience in Oklahoma NSF Award No. OIA-1946093



# S<sup>3</sup>OK: MOTIVATION AND GOALS

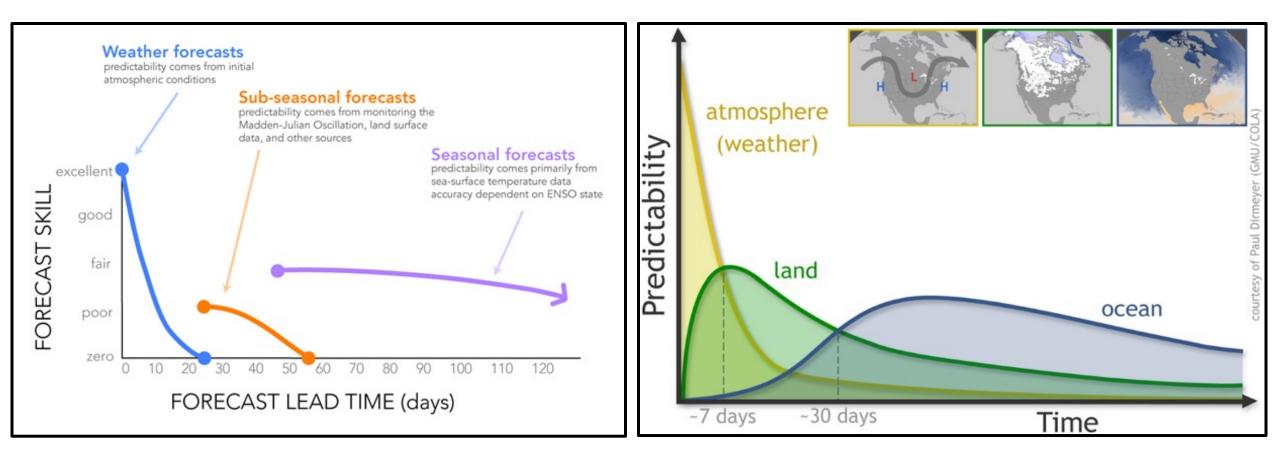
## THE GRAND RESEARCH CHALLENGE

Finding **broadly acceptable and sustainable solutions** to the intersecting (wicked) problems posed by:

- Changing S2S weather patterns
- Terrestrial water and carbon dynamics
- Changing water quality/quantity; shifting landscape use
- Enhanced threats to infrastructure

5-Year Project – Launched 1 July 2020

Multi-institutional project across Oklahoma


# S<sup>3</sup>OK: MOTIVATION AND GOALS

#### WHAT MAKES A PROBLEM WICKED?

- We have incomplete knowledge and/or *competing understandings* of the problem
- The problems are *interconnected* while stakeholders and institutions that seek to solve the problems are not
- The key stakeholders have *varying perceptions, beliefs* and interests
- The magnitude of <u>expected economic costs of the problem and of potential</u> <u>solutions</u> is large and unequally distributed

# OKLAHOMA NSF EPSCoR RESEARCH

#### S2S: WHAT IS SUBSEASONAL TO SEASONAL (S2S)?



S2S is the "gap" between weather and climate.



#### **Goals and Objectives**

<u>Research Question:</u> What key features and feedback processes (e.g., synoptic blocking, teleconnections, surface-atmosphere exchange, snowpack,etc.) drive S2S events in space and time?

<u>Research Question:</u> How can we improve the predictability of critical S2S processes and events?

<u>Research Question:</u> What S2S thresholds and baselines are needed to improve or protect infrastructure, water (quality, quantify, reuse), carbon (e.g., agriculture), and overall societal needs?

- S2S Objective 1. Understand the basic processes driving changes in S2S patterns.
- S2S Objective 2. Improve models and predictions of basic S2S process and events.
- S2S Objective 3. Develop the data necessary for managing water, carbon and water cycles, and infrastructure in OK.
- S2S Objective 4. Create the S2S data repository and delivery system for the S3OK team, stakeholders, and future end users.

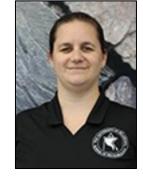


| Historical Record                                                                                                                                                               | S2S Predict                                                                                                                                                                                                                  | S Predictability |                                          | S2S in a Changing Climate                                                                                                                                                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Drought, Flash<br/>Drought</li> <li>Excessive<br/>Precipitation,<br/>Pluvial,<br/>Recovery</li> <li>Severe Weather</li> <li>Heatwaves</li> <li>Unseasonably</li> </ul> | <ul> <li>S2S Drivers</li> <li>Teleconnections</li> <li>Terrestrial-<br/>Atmosphere<br/>Interactions</li> <li>(Synoptic)<br/>Blocking<br/>Patterns</li> <li>Atmospheric<br/>Waveguide</li> <li>Winter<br/>Snowpack</li> </ul> |                  | e<br>ons<br>ng<br>tionarity<br>al Timing | <ul> <li>Impacts</li> <li>Sustainability,<br/>Decision<br/>Making,<br/>(Emergency)<br/>Response</li> <li>Infrastructure</li> <li>Water Quantity,<br/>Quality, Reuse</li> <li>Carbon,<br/>Agriculture,<br/>Environment</li> <li>Urban Versus<br/>Rural</li> </ul> |  |  |



# The S3OK S2S Team




Dr. Yuting Zhou Department of Geography Oklahoma State University



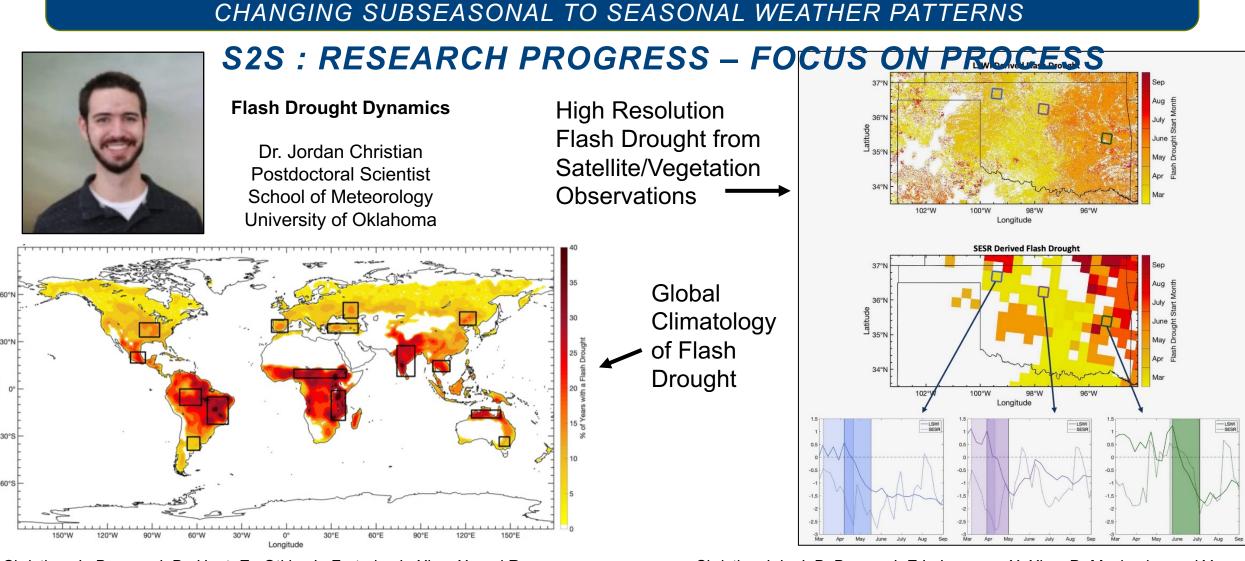
Dr. Jason Furtado – **FA Co-Lead** School of Meteorology University of Oklahoma



Dr. Jeffrey Basara – **FA Lead** School of Meteorology



Dr. Elinor Martin School of Meteorology University of Oklahoma




Dr. Joseph Ripberger Department of Political Science University of Oklahoma

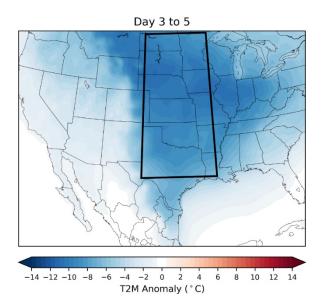


- School of Civil Engineering and Environmental Science University of Oklahoma
- Postdoctoral Scientist Dr. Jordan Christian

• 7 (Current) Graduate Students



**RESEARCH FOCUS AREA 1: S2S** 


Christian, J., Basara, J. B., Hunt, E., Otkin, J., Furtado, J., Xiao, X. and R. Randall, 2021: Global Distribution, Trends, and Drivers of Flash Drought Occurrence. *Nature Comms.*, **12**, 6330 (2021). https://doi.org/10.1038/s41467-021-26692-z.

Christian J. I., J. B. Basara, L.E.L. Lowman, X. Xiao, D. Mesheske, and Y. Zhou, 2022: Flash Drought Identification from Satellite-Based Land Surface Water Index. *Remote Sensing Applications: Society and Environment*, **26**, 100770.

#### **S2S : RESEARCH PROGRESS – FOCUS ON PROCESS**



Day 0 Day 0



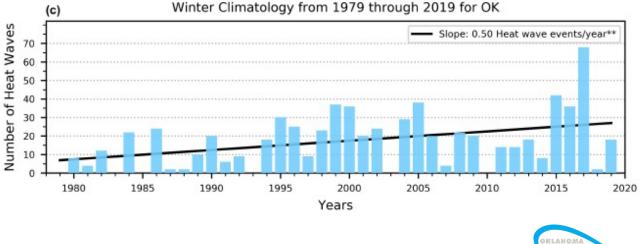
**Drivers and Predictability of Cold** 

**Snaps in the Great Plains** 

Ollie Millin

Graduate Research Assistant

School of Meteorology


University of Oklahoma

Millin, O. T., J. C. Furtado, J. B. Basara, 2021: Characteristics, Evolution, and Formation of Cold Air Outbreaks in the Great Plains of the United States. *J. Climate*. https://doi.org/10.1175/JCLI-D-21-0772.1



(All Season) Heat Waves in the Southern Great Plains

Taylor Grace Graduate Research Assistant School of Meteorology University of Oklahoma

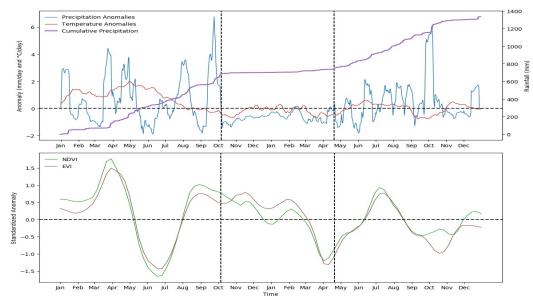




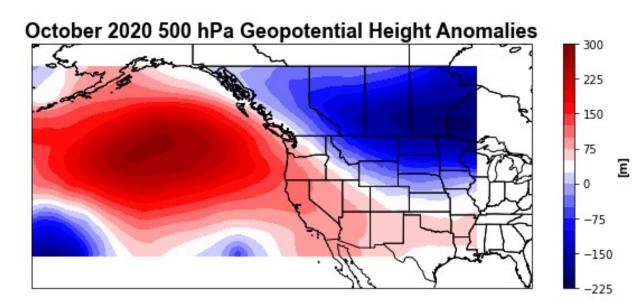
**Taylor** was awarded the **2<sup>nd</sup> Place Student Oral Presentation Award** at the 34<sup>th</sup> Symposium on Climate Variability and Change – AMS 2022

#### S2S : RESEARCH PROGRESS – FOCUS ON PROCESS




S2S Precipitation Transitions: Drought to Pluvial – Pluvial to Drought

> Bryony Puxley Graduate Research Assistant School of Meteorology University of Oklahoma




#### The October 2020 Ice Storm

Alyssa Woodward (<u>Graduated</u>) Graduate Research Assistant School of Meteorology University of Oklahoma



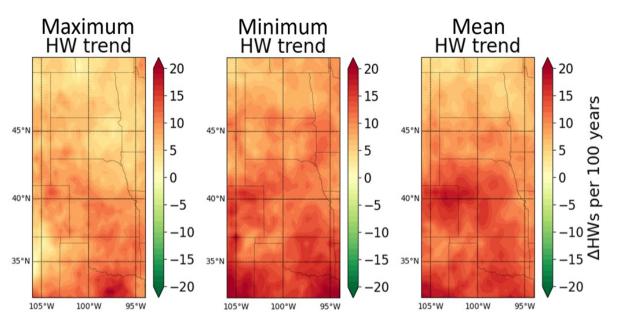
**Key Results:** Location/timing of precipitation whiplashes (especially Fall transitions) and links to wildfires.

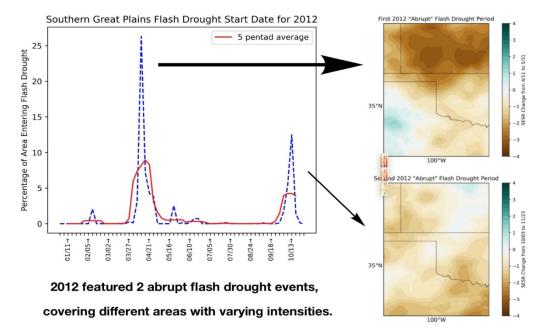


**Key Results:** Earliest ice storm on record, major impacts across sectors, links to large-scale dynamical processes.

#### S2S : RESEARCH PROGRESS – FOCUS ON PROCESS




Wet Bulb Globe Temperature Heat Stress and Heatwave Events


Ben Davis Graduate Research Assistant School of Meteorology University of Oklahoma



Abrupt Flash Drought Events And Associated Impacts to Agriculture

> Ben Fellman Graduate Research Assistant School of Meteorology University of Oklahoma





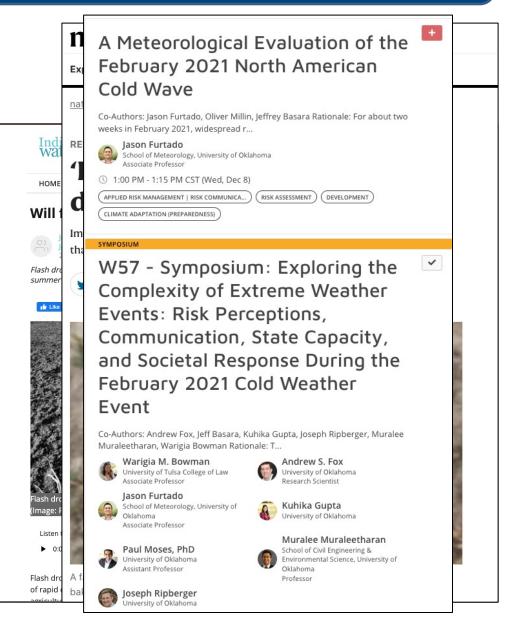
#### **S2S : RESEARCH PROGRESS – FOCUS ON PROCESS**



**Compound and Cascading Events** 

Henry Olayiwola Graduate Research Assistant School of Meteorology University of Oklahoma




#### **Temperature Whiplash Events**

Katherine Giannakopoulos Graduate Research Assistant School of Meteorology University of Oklahoma

# Coming Soon ...

#### **Impacts of the Research**

- <u>Example</u> Flash drought research has improved methods to identify and monitor occurrence from local (i.e., in Oklahoma) to global. Was published in a high impact journal (Nature Communications), was featured as a Nature Highlight, has received significant media coverage, and has directly impacts research collaborations with other S3OK teams (TWCD, SI, SD, V-MWQ)
- <u>Example</u> Cold air outbreak research has advanced scientific understanding across the weather/S2S/climate research but also tangible impacts across infrastructure and socio-economic impacts. Jason Furtado presented at the Society for Risk Analysis Annual Meeting in December 2021.



- Understanding Processes
- Predictability/Change
- Impacts
- Extreme Events

#### **Focus Timelines**

- 1. Years 1-4
- 2. Years 2-5
- 3. Years 2-5
- 4. Years 1-5

| Historical Record S2S Predict                                                                                            |                                                                                                                | ability S2S in                                                                                 |           | a Changing Climate                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Critical S2S Topics</li> <li>Drought, Flash<br/>Drought</li> <li>Excessive<br/>Precipitation,</li> </ul>        | <ul> <li>S2S Drivers</li> <li>Teleconnections</li> <li>Terrestrial-<br/>Atmosphere<br/>Interactions</li> </ul> | <ul> <li>S2S Variabi</li> <li>Extreme<br/>Transitio</li> <li>Cascadir<br/>Events</li> </ul>    | ons<br>ng | Impacts <ul> <li>Sustainability,</li> <li>Decision</li> <li>Making,</li> <li>(Emergency)</li> </ul>                                |
| <ul> <li>Pluvial,</li> <li>Recovery</li> <li>Severe Weather</li> <li>Heatwaves</li> <li>Unseasonably<br/>Cold</li> </ul> | Atmospheric                                                                                                    | <ul> <li>Non-stationarity</li> <li>Seasonal Timing</li> <li>Multivariate<br/>Trends</li> </ul> | l Timing  | <ul> <li>Response</li> <li>Infrastructure</li> <li>Water Quantity,<br/>Quality, Reuse</li> <li>Carbon,<br/>Agriculture,</li> </ul> |
|                                                                                                                          | Snowpack                                                                                                       |                                                                                                | <b></b>   | Environment <ul> <li>Urban Versus</li> <li>Rural</li> </ul>                                                                        |

#### **Future Plans**

- Transition from Process Understanding to Predictability and Change – especially in Years 2-3.
- Address Process and Predictability under the full S3OK umbrella (e.g., flash drought, whiplash events → wildfires, heatwaves, etc.)
- Analysis of Extreme Events and Impacts with S3OK teams (i.e., 2020 Ice Storm – <u>SI</u>, 2021 Deep Freeze - <u>SD</u>, 2021 Flash Drought - <u>TCWD</u>, etc.).
- Structured engagement with S3OK teams via focused/collaborative projects (e.g., the Little River Watershed Study).
- Continued development of the S3OK event database significant opportunities for collaboration.



