The Impact of the Madden-Julian Oscillation (MJO) on Extreme Winter Weather

Stephen Foskey Naoko Sakaeda, Jeffrey Basara, Jason Furtado CIWRO Workshop on S2S Prediction for High-Impact Weather Events 7 October 2022

Introduction

- Winter weather events have large societal impacts and are challenging to predict
 - Texas/Oklahoma winter storms Feb. 2021 caused 100+ deaths, billions of dollars of damage from power outages
- Subseasonal-to-seasonal (S2S) prediction of winter weather
 - MJO major source of S2S predictability (e.g., Tseng • et al. 2017)
 - MJO has significant influence on eastern New • England snowfall (Klotzbach et al. 2016) and impacts on 2009-10 winter over Mid-Atlantic U.S. (Moon et al. 2011)
 - Limited research on MJO impacts on winter weather • over entire U.S.

Figure source:

What is the Madden-Julian Oscillation?

- MJO is oscillation of pressure and wind values associated with convection propagating along Equator
- Typically divided into 8 phases based on location of convection
- Time scale of 30-90 days
- MJO affects global circulation
 - e.g., Sardeshmukh and Hoskins 1988, Garfinkel et al. 2014

Figure source: NOAA Climate.gov

MJO and Subseasonal Predictability

- MJO has significant impacts on mid-level heights out to 14 days (S2S) (Tseng et al. 2017)
- Also has impact on North Atlantic Oscillation (e.g., Cassou 2008) and Pacific North America patten (e.g., Riddle et al. 2013)
- But these impacts have not been tied to winter weather frequency over the United States

500 hPa height anomalies associated with MJO phase

5-9 day lag

10-14 day lag

Figure source: Tseng et al. 2017

20

0 E

-20

Research Goals

- **Research question:** How does the phase of the MJO impact the frequency of winter weather events over the United States?
- **Hypothesis:** Changes in winter weather frequency are caused by changes in the flow pattern influenced by MJO and its effect on temperature and precipitation.

Winter Weather Data Sources

- National Centers for Environmental Information (NCEI) Storm Event Database contains impactful winter weather events across US
 - 1996-2018
 - Events that meet winter storm warning criteria
- December-March selected as study period based on storm report count
- Compared to Global Historical Climatology Network (GHCN) station data
 - Approx. 800 stations from 1979-2020

Definition of Frequency Ratio

frequency of storms per MJO phase = $\frac{\text{number of reports in given phase}}{\text{number of zones in WFO} \times \text{number of days in given phase}}$

frequency ratio = $\frac{\text{frequency of storms per MJO phase}}{\text{daily climatological frequency}}$

- Frequency ratio > 1 → winter weather more frequent than climatology
- Frequency ratio < 1 → winter weather less frequent than climatology

Source: NWS Cheyenne

Frequency Ratio of Winter Weather

- High frequency ratios shift from east to west in phases 1-3
- High values across central/western US in phase 4
- Lower in phases 5-8 except in parts of the South

0.8

1.6

1.4

1.2

DJFM

ď

0.2

Lagged Frequency Ratio

- Frequency ratio of winter weather a given number of days after a phase of the MJO in the Southern Plains
- Snow and winter storms have stairstep pattern
 - Frequency in given phase similar to frequency in previous phase 5 days prior
- Pattern also present with low frequency ratios

GHCN Precipitation Accumulation Ratios

- Higher precipitation in areas of higher frequency ratio for phases 3-4
- But phases 1 and 2 had above normal precip. and below normal snow
- So precipitation could be responsible for some but not all variation in snowfall

850 hPa Temperature – Southern Plains **Storm Days** Ice Storm DJFM

- Temperature and wind anomalies on days with a given type of winter weather event (storm days)
- Strong temperature gradient across the region
- Colder heavy snow days as compared to ice storm days
- Anomalous warm air advection, especially for ice storms
- Pattern most similar to phases 2 and 7, with cold to north, warmth to south

850 hPa Temperature and Wind – MJO Effects

- Colder weather generally associated with heavy snow in phases 1-3
- Not the case in phase 4
- Warmer temperatures and less winter weather in phases 5-6
- Phases 7-8 had heavy snow in the Deep South, with cold air to the north

Temperature and Wind Anomalies at 850 hPa

e. OMI Phase 5

40°।

85°W

Conclusion

- MJO has significant effects on frequency of winter weather
- Sometimes increased winter weather is collocated with belownormal temperature, sometimes with above-normal precipitation
- In Southern Great Plains, phases 2 and 7 have frequent winter weather and favorable 850 hPa temperatures

	Phase 2	Phase 3	Phase 4	Phase 7
Enhanced winter weather?	Yes	No	Yes	Yes
Favorable temperatures	Yes	Yes	Neutral	Yes
Favorable precipitation	No	No	Yes	Neutral

Favorability of patterns for winter weather in the Southern Great Plains

References

- Cassou, C., 2008: Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation. Nat., 455, 523-527, <u>https://doi.org/10.1175/MWR-D-15-0434.1</u>.
- Garfinkel, C.L., J.J. Benedict, and E.D. Maloney, 2014: Impact of the MJO on the boreal winter circulation. *Geophys. Res. Let.*, 41, 6055-6062, <u>https://doi.org/10.1002/2014GL061094</u>.
- Green, M.R. and J.C. Furtado, 2019: Evaluating the Joint Influence of the Madden-Julian Oscillation and the Stratospheric Polar Vortex on Weather Patterns in the Northern Hemisphere. JGR Atmospheres, 124, 11693-11709, <u>https://doi.org/10.1029/2019JD030771</u>.
- Klotzbach, P.J., E.C.J. Oliver, R.D. Leeper, and C.J. Schreck III, 2016: The Relationship between the Madden-Julian Oscillation (MJO) and Southeastern New England Snowfall. *Mon. Wea. Rev.*, **144**, 1355-1362, <u>https://doi.org/10.1175/MWR-D-15-0434.1</u>.
- Moon, J.-Y., B. Wang, and K.-J. Ha, 2012: MJO Modulation on 2009/10 Winter Snowstorms in the United States, J. Climate, 25, 978-991, <u>https://journals.ametsoc.org/view/journals/clim/25/3/jcli-d-11-00033.1.xml</u>.
- Sardeshmukh, P.D. and B.J. Hoskins, 1988: The Generation of Global Rotational Flow by Steady Idealized Tropical Divergence. J. Atmospheric Sci., 45, 1228-1251, <u>https://doi.org/10.1175/1520-</u> 0469(1988)045<1228:TGOGRF>2.0.CO;2.
- Tseng, K.-C., E.A. Barnes, and E.D. Maloney, 2017: Prediction of the Midlatitude Response to Strong Madden-Julian Oscillation Events on S2S Time Scales. *Geophys. Res. Let.*, 45, 463-470, <u>https://doi.org/10.1002/2017GL075734</u>.
- <u>Zhou</u>, Y., K.R. Thompson, and Y. Lu, 2011: Mapping the Relationship between Northern Hemisphere Winter Surface Air Temperature and the Madden-Julian Oscillation. *Mon. Wea. Rev.*, **139**, 2439-2454, <u>https://doi.org/10.1175/2011MWR3587.1</u>.

Past Research on Extratropical and S2S Impacts of MJO

- The MJO can affect:
 - Temperature over Arctic and Mid-Latitudes (e.g., Vecchi and Bond, 2004, Matsueda and Takaya 2015)
 - Precipitation over Asia (Jeong et al. 2008)
 - Blocking patterns such as the North Atlantic Oscillation (e.g., Cassou 2008)
- MJO and stratosphere combined can have impacts on height field (e.g., Green and Furtado 2019)

Figure source: Zhou et al. 2012 Color represents temperature anomalies in °C

-3.0 -2.7 -2.4 -2.1 -1.8 -1.5 -1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

850 hPa Temperature – Southern Plains Storm Days

- Strong temperature gradient across the region
- Colder for heavy snow as compared to ice storms
- Anomalous warm air advection

Temperature Anomaly at 850 hPa Wind at 850 hPa: Heavy Snow DJFM

Longitud