"Right" Results but from "Wrong" Representation of the Rain Microphysics

An Extreme Rainfall Case Modeling Study

Yongjie Huang

Center for Analysis and Prediction of Storms (CAPS), University of Oklahoma

(Email: Yongjie.Huang@ou.edu; Homepage: huangyj.oucreate.com)

Acknowledges: Huiqi Li, Yali Luo, Hui Xiao, Ming Xue, Xiantong Liu, Lu Feng

CIWRO Hybrid Workshop on Forecast Applications Improvements, Sept. 30, 2022

Cloud- and precipitation-related dynamics, microphysics and their interaction

In-situ observations

Remote-sensing observations

Numerical models

Lots of uncertainties in cloud and precipitation microphysics

(Morrison et al. 2020)

 10^{6} 250 200 10⁵ Rain rate (mm h^{–1} Nr (# m⁻³) 150 10^{4} 100 10³ - 50 0 10² 0.002 0.004 0.006 0.008 0.010 $Qr (kg m^{-3})$

Uncertainties in lab experiments, observations, models

Rain rate based on the inverse exponential size distribution

"Right" rainfall but for "wrong" representation of the rain microphysics

- Rainwater evaporation plays a dominant role in cold pool development
- Fixed intercept parameter (N₀) in WSM6 tends to overestimate the number of small raindrops, evaporation, and then cold pool intensity
- Less physical single-mom WSM6 scheme produces precipitation much closer to the observation

Huang et al., 2020 (https://doi.org/10.1016/j.atmosres.2020.104939)

All simulations generally reproduce the major rainband, and NSSL simulates precipitation much closer to the observation.

Extreme rainfall in Guangdong during June 21-22, 2017 (Max hourly rainfall of 165 mm, max 3-h accumulated rainfall of 365.1 mm)

Heavy rainfall in NSSL mainly results from large raindrops, which is obviously different from the observed.

NSSL obviously overestimates the Z_H and Z_{DR} in the lower levels.

Strong self-collection/weak breakup in NSSL results in much more large raindrops.

4.0

Modifying self-collection/breakup of raindrops can improve the simulated raindrop size distribution.

Self-collection/breakup of raindrops in NSSL scheme

NRACR =
$$\begin{cases} E_c a_1 N_r^2 v_r^2 \frac{\mu+2}{\mu+1}, & r_c < 50 \mu m \\ E_c a_2 N_r^2 v_r, & r_c \ge 50 \mu m \end{cases}$$

 $E_c = \begin{cases} 1, & r_0 < 0.03 \text{ cm} \\ \exp[-50(r_0 - 0.03)], & 0.03 \le r_0 \le 0.1 \text{ cm} \\ 0, & r_0 \ge 0.1 \text{ cm} \end{cases}$

NSSL_B: 0.1 cm \rightarrow 0.05 cm

12-h accumulated precipitation

Summary & Future Work

- □ Simulations of an extreme rainfall event using five bulk microphysics schemes are evaluated against data from 2DVD and dual-pol radar.
- □ Although the NSSL scheme simulates precipitation intensity and distribution much closer to the observations, it overestimates the number of large raindrops due to the strong self-collection and cannot accurately reproduce the observed raindrop size distribution.
- Modifying the rain self-collection/breakup process in the NSSL scheme can improve the simulated raindrop size distribution.

Given Future work:

- Conduct process-based evaluations of more cases to reveal "right results but for wrong reasons" in cloud and precipitation microphysics.
- Investigate whether there are systematic differences in rain microphysics among microphysics schemes in different environments.
- Examine uncertainties of ice-/mixed-phase processes and their roles in storm dynamics and precipitation.

Thank you!

Email: Yongjie.Huang@ou.edu Homepage: huangyj.oucreate.com

Twitter: @yongjie_huang

Idealized simulations

	Abbreviation	Description
Changing	PRACW	Collection of cloud water by rain
rain mixing	PRAUT	Autoconversion of cloud droplets to rain
ratio	PREVP	Evaporation of rain
	PGMLR	Melting of graupel to rain
	PSMLR	Melting of snow to rain
	PGACR	Collection of rain by graupel
	PSACR	Collection of rain by snow
	PIACR	Collection of rain by ice
	PHMLR	Melting of hail to rain in the NSSL scheme
	PHACR	Collection of rain by hail in the NSSL scheme
	PGSHR	Shedding of graupel in the NSSL scheme
	PSSHR	Shedding of snow in the NSSL scheme
	PHSHR	Shedding of hail in the NSSL scheme
	PRSHR	Shedding of rain in the NSSL scheme
	PGEML	Enhanced melting of graupel by accretion of water in the
		Morrison scheme
	PSEML	Enhanced melting of snow by accretion of water in the
		Morrison scheme
Changing	NRAUT	Autoconversion of cloud droplets to rain
rain number	NRACR	Self-collection/breakup of rain
concentration	NREVP	Evaporation of rain
	NGMLR	Melting of graupel to rain
	NSMLR	Melting of snow to rain
	NGACR	Collection of rain by graupel
	NSACR	Collection of rain by snow
	NIACR	Collection of rain by ice
	NHMLR	Melting of hail to rain in the NSSL scheme
	NHACR	Collection of rain by hail in the NSSL scheme

Cold pool boundary

0.1 1 5 10 15 20 25 30 35 40 45 (%)

Cold pool boundary

