

Goals

Conduct R&D with UAS and other measurement systems to support fire weather predictions through the study of landatmosphere interactions and PBL processes.

Improve the representation of aerosols and smoke in operational forecasting models.

ARL Observation Platforms

Instrument	Sampling Height(s) (m AGL)
HMP110 T, RH probe	2
Aspirated PRT	2 ,10
Pressure sensor	1
Hukseflux net radiometer	2.5
TP01 soil temperature probe	-0.05, -0.10, -0.20
Decagon soil moisture probe	-0.05, -0.10, -0.20
Propeller anemometer	2, 10
PAR sensor	2.5
Closed path gas analyzer	10
Sonic anemometer	10

Table 1: Instruments on ARL's 10-m met. towers.

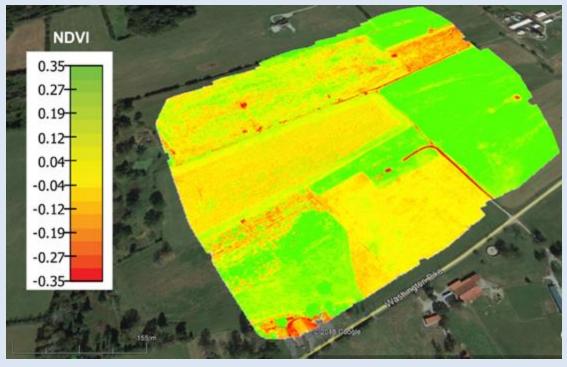
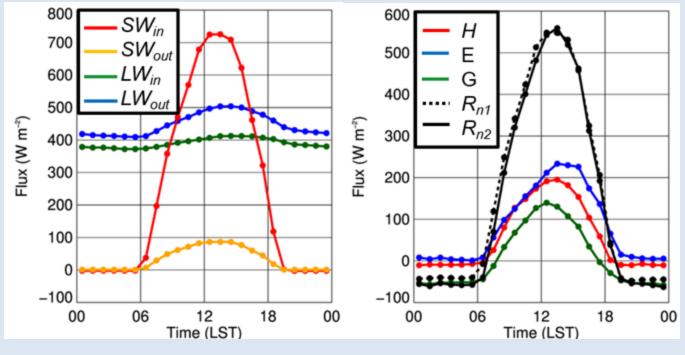
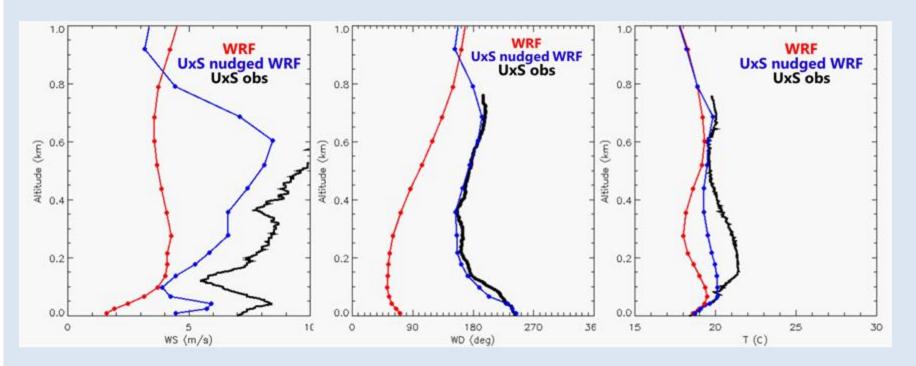

Model	CopterSonde	APH-28	BlackS
Variables Sampled	<i>T, q, p, u, v</i>	T, q, u, v, LST	T, q, u,
Instruments	Self-contained	iMet XQ2	iMet
		Vis/IR camera	Multi-hc
		MicaSense Altum PT	Fast-respo
			MicaSenso
Manufacturer	Univ. of Oklahoma	Aerial Imaging Sol.	BlackSv
Units in Fleet	1	1	
Gross Weight	2 kg	5 kg	6.6
Autopilot	Pixhawk	AVR	Swif
Endurance	15 min	20 min	80

Table 2: Current UAS in ARL's fleet.

NOAA Air Resources Laboratory's Capabilities to Support Fire Weather Research as Demonstrated **Through Recent Campaigns**


Temple R. Lee¹, Sreenath Paleri^{1,2}, Barry Baker¹, Tilden P. Meyers¹, and John Kochendorfer¹


Results from Recent Campaigns

Finescale NDVI estimates

from UAS.

Air Quality Modeling

Model	Chemistry Available	Application		
RRFS –	Simplified Aerosols:	Regional Wildfire		
Smoke + Dust	Smoke + Dust	Smoke Forecasts		
	Tracers			
UFS –	Simplified Aerosols:	Global Weather		
Aerosols	GOCART	Forecasts with		
		aerosol feedbacks		
Online CMAQ	Complex chemistry	Regional Air Quality		
	from CMAQ:	Forecasts		
	Ozone and Aerosols			
Problems / Opportunities:				

- **Problems / Opportunities:** Chemistry-related code is duplicated across the UFS, which is not unified and time intensive to maintain.
- Would like to add research capabilities for atmos. composition and chemistry, but it is unclear how to do this with chemistry divided across so many models/applications.

NOAA • AIR RESOURCES LABORATORY

v, w, LST t XQ2 ole probe onse T/RH, se Altum PT wift Tech. .6 kg iftPilot) min

Obs. from sfc. energy balance systems (Lee and Buban 2020)

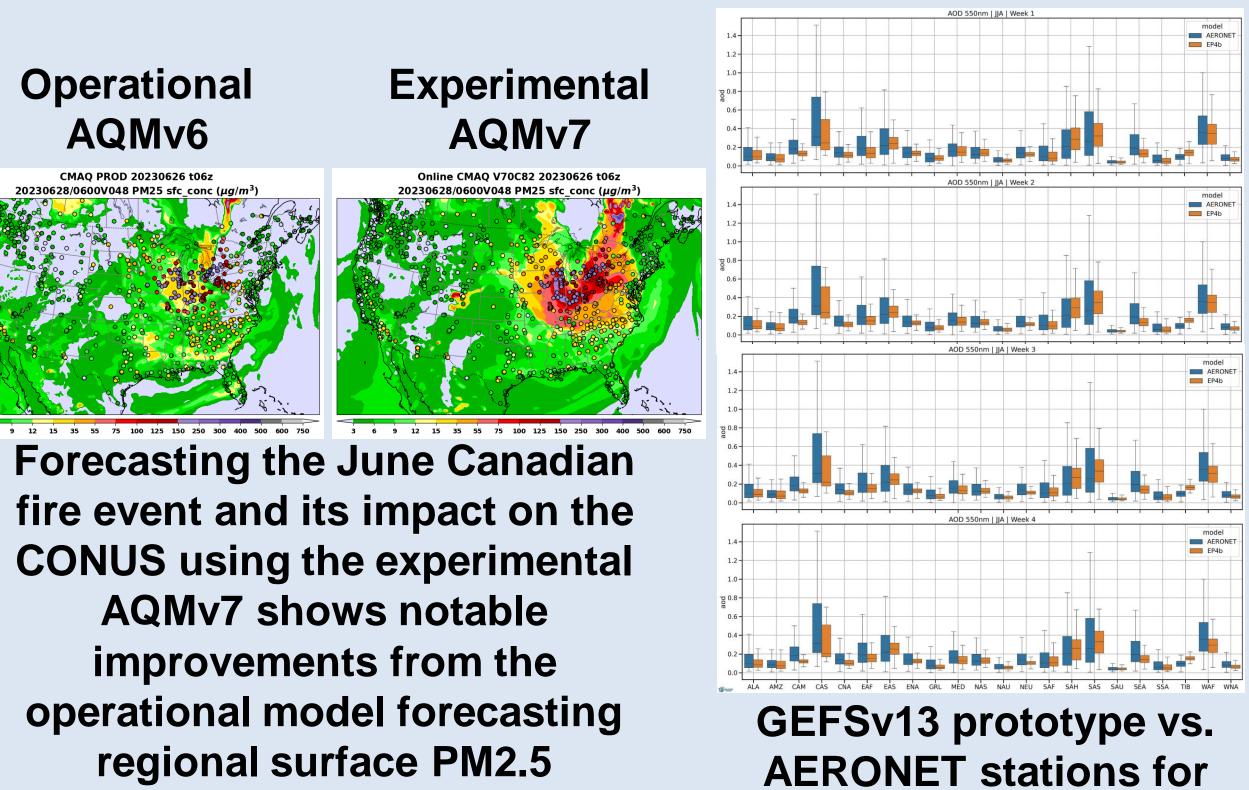

UAS DA improves forecasted sfc. winds + temp. (Ngan et al. 2023)

 Table 3: Current
 UFS structure for atmospheric chemistry and composition.

Operational AQMv6

AQMv7

concentrations.

Collaboration with Other OAR Labs

- Fire weather experimental testbeds through targeted field campaigns, e.g. Study of Precipitation, the Lower Atmosphere and Surface for Hydrometeorology (SPLASH)
- Collaborative and integrated field experiment designs at Table Mountain, CO and Bondville, IL
- Plans for PBL supersites at Blodgett Forest, CA; Audubon, AZ; Reynolds Creek, ID

Advantages of a Collaborative Obs. Strategy for Fire Wx Research

Improved physical understanding of L-A interactions feedbacks

Improved model initialization through coupled DA systems

Improved short and medium range forecasts, as well as seasonal and climate predictions, by improving model physics

Improved fire, air, and water quality prediction

Weeks 1-4.