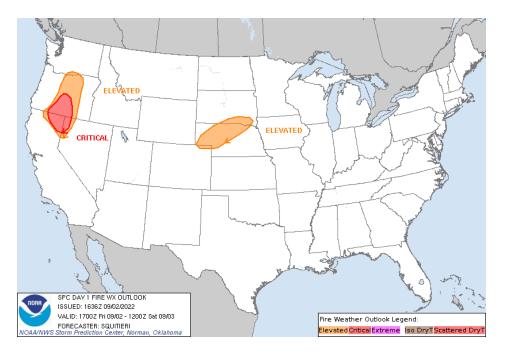

CIWRO/SPC Activities in Fire Weather Research

David Jahn^{1,2}, David Harrison^{1,2}, Bethany Earnest^{1,3}, Evan Bentley², Patrick Marsh², Israel Jirak², Matt Elliott², Amy McGovern³, Chris Karstens²

¹Cooperative Institute for Severe and High-Impact Weather Research and Operations/University of Oklahoma ²Storm Prediction Center/National Weather Service/NOAA ³OU School of Computer Science



CIWRO/SPC Mission in Fire Weather Research

Support SPC forecasters in their operational duties for the generation of fire weather outlooks.

SPC Fire Weather Outlook

SPC Mesoscale Assistant/ Fire Weather Forecasters:

Evan Bentley Andrew Lyons Andrew Moore Brian Squitieri Emily Thornton Harry Weinman Nathan Wendt

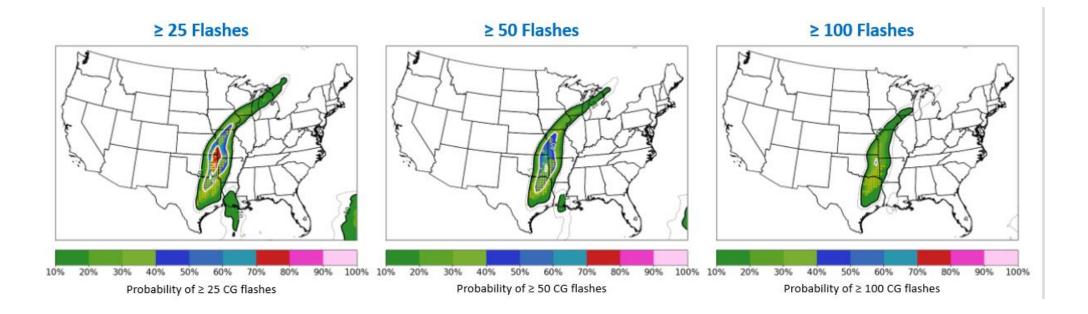
New Fire Weather SOO! Nick Nauslar

Fire Management and Risk Perception Through an Organizational Lens

Evan Bentley NOAA/NCEP Storm Prediction Center

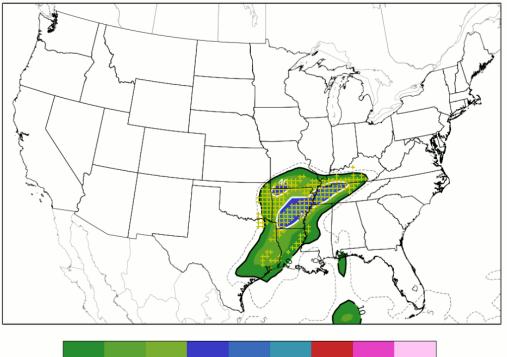
SPC Fire Weather Outlooks are intended to delineate areas of the contiguous U.S. where pre-existing fuel conditions, combined with forecast weather conditions during the next 8 days, will result in a **significant** threat for the ignition and/or spread of wildfires. This product is intended for use by WFOs, as well as other federal, state, and local government agencies.

Outline of Research Topics


Lightning density prediction	Predicting Probabilistic Lightning Flash Density from the HREF Calibrated Thunder Guidance, <i>David Harrison (CIWRO/SPC)</i>
Fire occurrence prediction	Exploring the Role of Weather Forecasts in Predicting Wildfire Occurrence for CONUS Using the Unet3+ Deep Learning Model, <i>Bethany Earnest (CIWRO/SPC)</i>
Resource planning	SPC fire weather outlooks and associated observed fire behavior and deployed mitigation resources, <i>David Jahn</i> (CIWRO/SPC)

Predicting Probabilistic Lightning Flash Density from the HREF Calibrated Thunder Guidance

David Harrison^{1,2}, Patrick Marsh², Israel L. Jirak² ¹Cooperative Institute for Severe and High-Impact Weather Research and Operations/University of Oklahoma ²Storm Prediction Center/National Weather Service/NOAA



Lightning Flash Density Guidance – David Harrison

Lightning occurrence only

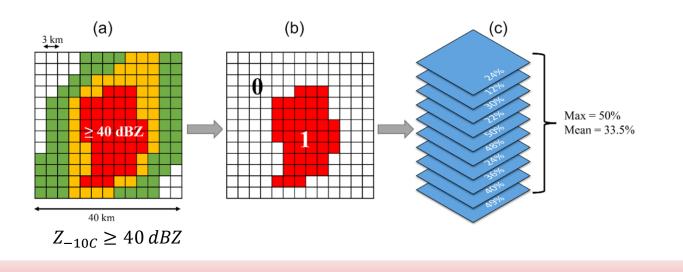
- The HREF Calibrated Thunder guidance (HREFCT) was made operational within NWS in May 2021
 - Uses prognostic HREF storm-scale attributes and environmental parameters to predict the probability of \geq 1 CG flash
 - Z_{-10C} , Accumulated Precipitation, MU LI
 - Proven to be skillful and reliable at 1-, 4-, and 24hour intervals
 - Widely used within SPC to help produce Thunderstorm Outlooks

4-Hour Calibrated Thunder Probability 12Z HREF 20191216 12Z - 20191216 16Z

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Probability of **at least 1 CG flash** within 12 miles

Harrison, D. R., M. S. Elliott, I. L. Jirak, and P. T. Marsh, 2022: Utilizing the High-Resolution Ensemble Forecast System to produce calibrated probabilistic thunderstorm guidance. *Wea. Forecasting*, **37**, 1103–1115, <u>https://doi.org/10.1175/WAF-D-22-0001.1</u>.

https://www.spc.noaa.gov/exper/href/?model=href&product=guidance_thunder_hrefct_004h



Lightning Flash Density Guidance – David Harrison

Lightning density probability

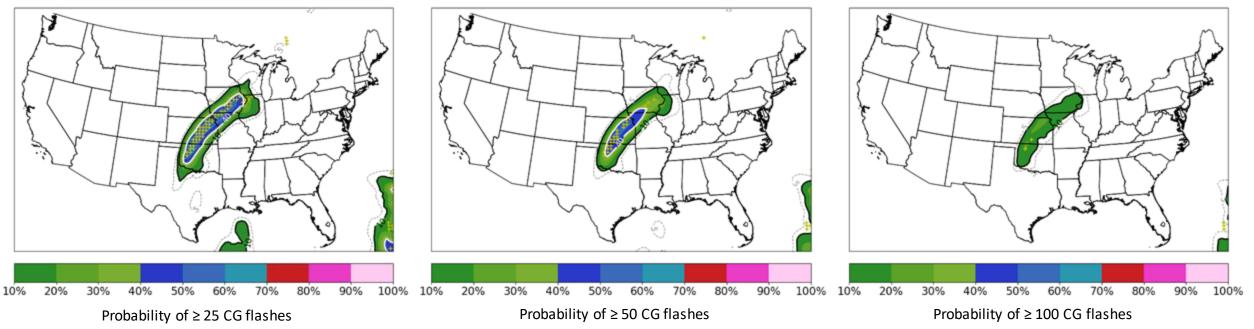
Labels: CG lightning flashes provided by Vaisala's NLDN Input variables:

- HREF calibrated guidance 4-hour forecasts
 - operational system that predicts probability of lightning occurrence, but not density
 - Based on HREF storm and env. attributes, observed radar reflectivity and env. stability
- Neighborhood Maximum Updraft Vertical Velocity
- Ensemble Mean/Max Fractional Coverage $Z_{-10C} \ge 40 \ dBZ$

20221104 4-hour Lightning Density Forecasts 12z HREF/HREFCT; F04 – F39

 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%
 100%

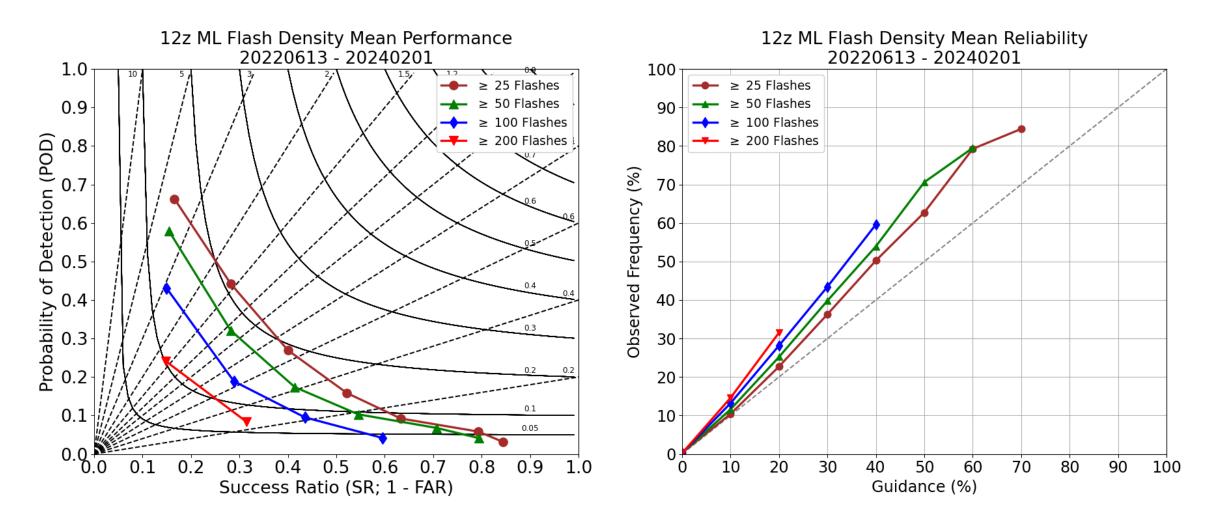
Probability of > 25 CG flashes within 12 miles


20221104 4-hour Lightning Density Forecasts

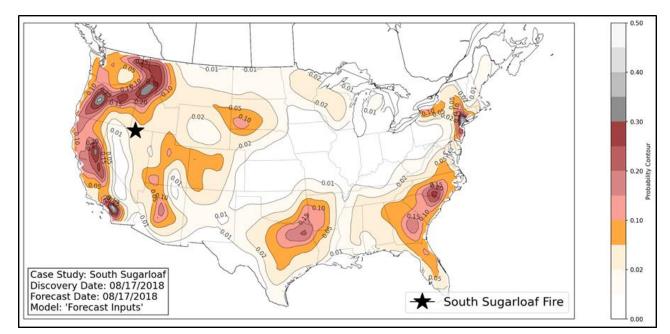
12z HREF/HREFCT; F04 – F39

≥ 25 Flashes

≥ 50 Flashes


≥ 100 Flashes

Skill

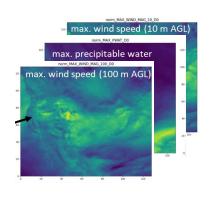


Exploring the Role of Weather Forecasts in Predicting Wildfire Occurrence Using the Unet3+ Deep Learning Model

Bethany Earnest^{1,2}, Amy McGovern², Chris Karstens²

¹Cooperative Institute for Severe and High-Impact Weather Research and Operations/University of Oklahoma ²OU School of Computer Science ³Storm Prediction Center/National Weather Service/NOAA

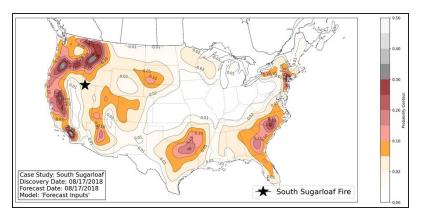
Example daily guidance product showing the probability of fire occurrence (generated separately for days 1-10)



Fire Occurrence Model – Beth Earnest

Model, Data Setup

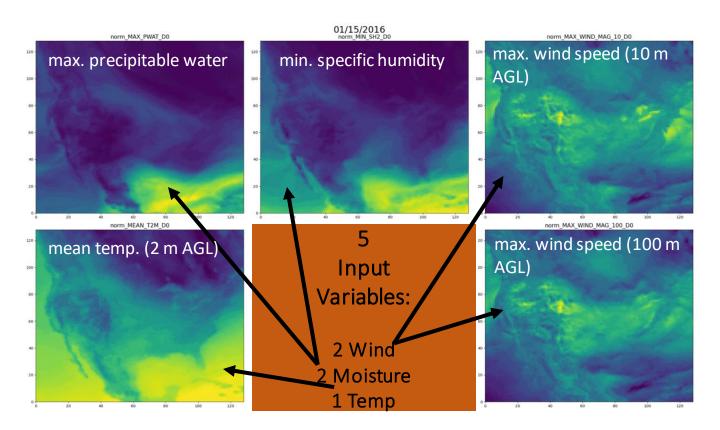
Predictors:

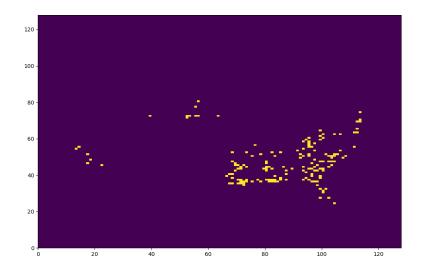

- GEFS reforecast fields
- temperature, winds, moisture
- **2000-2019**

Machine Learning Model

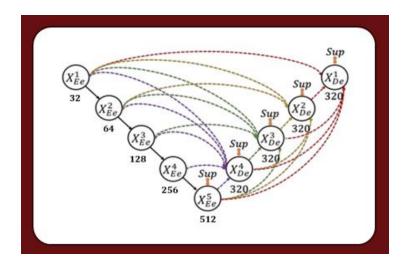
 $\begin{array}{c} Sup\\ Sup\\ 32\\ & \\ 32\\ & \\ 32\\ & \\ 32\\ & \\ 32\\ & \\ 64\\ & \\ 512\\ & \\ 5$

Fire occurrence guidance (days 0-10) (11 models trained: one for each forecast day)




Labels: Fire occurrence data (2000-2019)

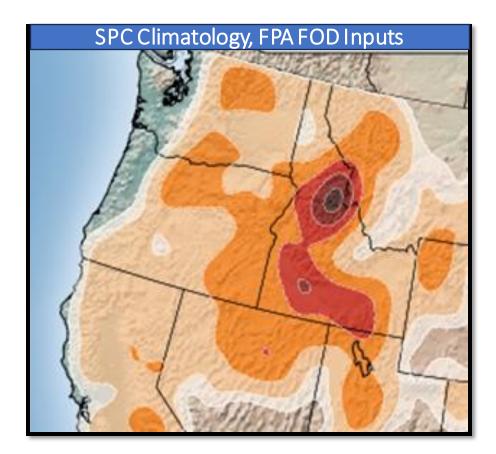
Daily 40-km gridded GEFS reforecast fields (2000-2019) 24-hr. max/min/mean. field, normalized (0-1)



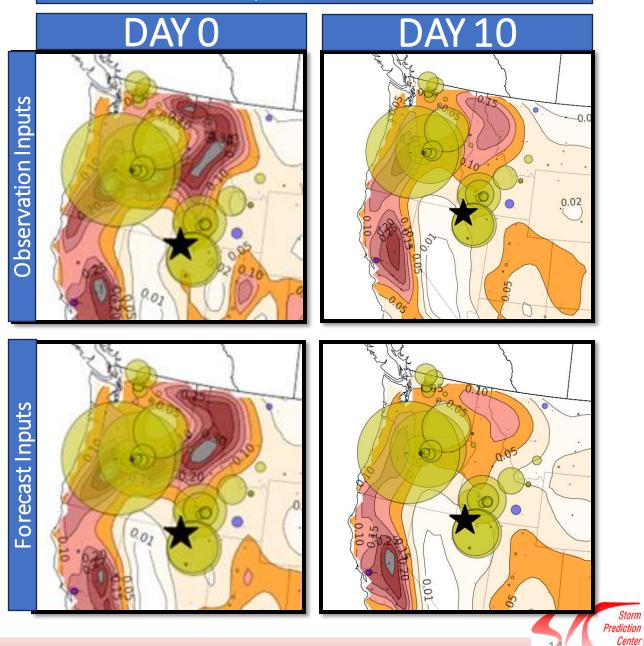
Wildfire data:

- •
- FAP-FOD database (USDA Forest Service) All fires included (all sizes, all causes) Each point: at least one fire within 40 km grid cell within 24hr period

U-Net 3+ Model: Neural network w/ encoderdecoder architecture and full-scale skip connections



Model trained separately for days 0-10, and separately using as inputs observations (day 0) OR GEFS forecast (of respective model forecast day, 0-10)

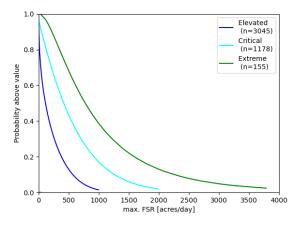


South Sugarloaf Largest Lightning Fire of 2018

GEFS Inputs, FPA FOD Labels

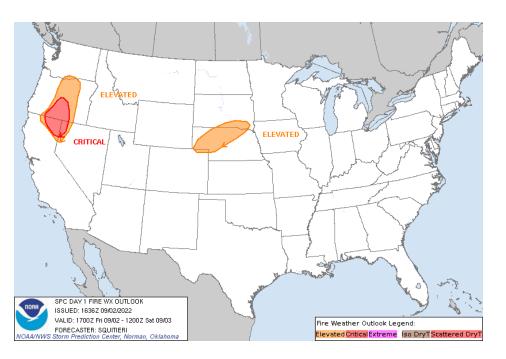
ioman, Oklahoma

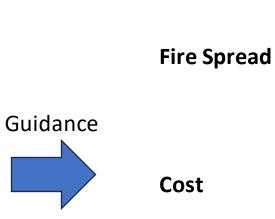
Observed Fire Behavior and Deployed Mitigation Resources Related to Risk Categories of SPC Fire Weather Outlooks

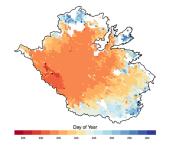

David E. Jahn^{1,2}, Patrick Marsh², Israel L. Jirak²

¹Cooperative Institute for Severe and High-Impact Weather Research and Operations/University of Oklahoma ²Storm Prediction Center/National Weather Service/NOAA

For an example case (2018-08-11), SPC Fire weather outlook critical level (yellow contour: 'elevated', red contour: 'critical'); dashed circles show wildfires with FSR [acres/day]






Fire Outlook and Resource Planning

Goal: Identify a statistical relationship among risk categories of SPC fire weather outlooks and fire behavior as well as required suppression resources.

SPC Fire Weather Outlook

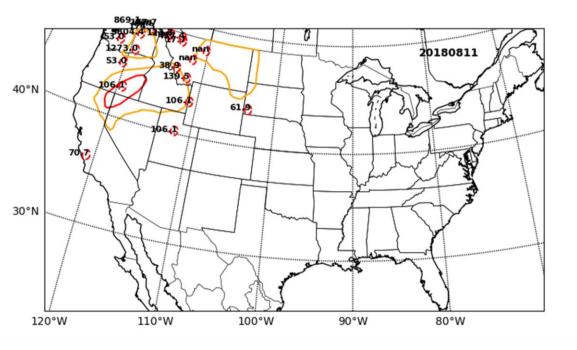
https://www.firelab.org/project/ics-209-plus

\$\$\$

Goal

People

https://csfs.colostate.edu/wildfire-mitigation/becoming-a-wildland-firefighter/

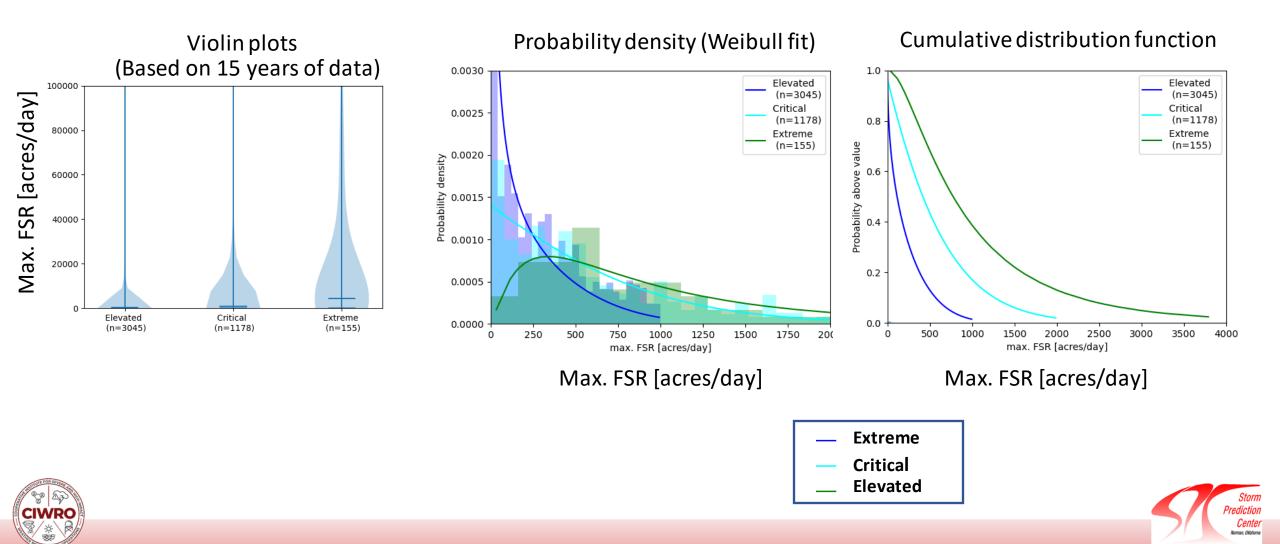


Data

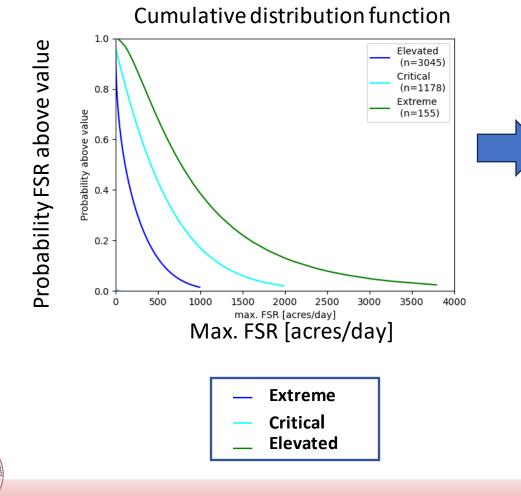
Relate SPC outlook risk category data and wildfire data

ICS-209 Plus Data

- Data for each wildfire: projected cost, fire spread rate, deployed personnel, ... (much more!)
- 2% of all wildfires during 1999-2020 that represents 80% of suppression costs.
- https://doi.org/10.6084/m9.figshare.19858927.v3
- St. Denis, Lise A.; Short, Karen C.; McConnell, Kathryn; Cook, Maxwell C.; Mietkiewicz, Nathan P.; Buckland, Mollie; Balch, Jennifer K. 2023. Allhazards dataset mined from the US National Incident Management System 1999-2020. *Scientific Data*. **10**: 112.



For an example case (2018-08-11), SPC Fire weather outlook critical level (yellow contour: 'elevated', red contour: 'critical'); dashed circles show wildfires with FSR [acres/day]



Probability of fire spread rate (FSR) related to fire risk category

Probability of fire spread rate (FSR) related to fire risk category

	Elevated	Critical	Extreme
Prob. > 2000 [acres/day]	0%	1.9%	13.0%
Prob. > 1000 [acres/day]	0.1%	17.1%	38.6%
Prob. > 500 [acres/day]	12.9%	43.3%	68.1%

Posters

Fire Management and Risk Perception Through an Organizational Lens, *Evan Bentley, SPC*

Exploring the Role of Weather Forecasts in Predicting Wildfire Occurrence for CONUS Using the Unet3+ Deep Learning Model, *Bethany Earnest, CIWRO/SPC*

Predicting Probabilistic Lightning Flash Density from the HREF Calibrated Thunder Guidance, *David Harrison, CIWRO/SPC*

SPC fire weather outlooks and associated observed fire behavior and deployed mitigation resources, *David Jahn, CIWRO/SPC*

