13 Feb 2024

Radar Observations of Wildfire Plume Dynamics

Neil P. Lareau

Associate Professor Department of Physics University of Nevada, Reno nlareau@unr.edu

Radars observe wildfire plume process:

- Fire-generated winds (vortices)
- Plume Structure/Evolution
- PyroCu/Cb processes
- And more...

See Lareau et al. 2018 (GRL)

Fire generated winds: Counter Rotating Vortex Pair (CVP)

River Fire near Grass Valley, CA

Loyalton Fire near Reno, NV

Radar Reveals Plume Structures Linked to CVPs

Lareau et al. 2021 (BAMS)

Radar Reveals Plume Structures Linked to CVPs

Lareau et al. 2021 (BAMS)

Common features:

- 1. Meso-scale flow splitting and reversal
- 2. CVP on flanks of the head fire
- 3. Tornadic vortices embedded within and trailing from the anticyclonic CVP
- 4. PyroCb (more later)

Lareau et al. 2021 (BAMS)

CVP Development during the Dixie Fire

Christian Monterrosa @chrismatography

;

Creek Fire, California 9/5/2020

PyroCb Development and FGTVs

Lareau et al. 2021 (BAMS)

How strong are pyroCb updrafts? (Extreme, From Pioneer Fire)

Radar Velocity: Max updraft: 58.1 m s⁻¹ (130 mph) Max downdraft: ~-30 m s⁻¹

W-band Doppler Velocity (unfolded), Wyoming Cloud Radar

Chains of thermals

Parcels in the updraft continue to accelerate Mechanically forced downdrafts and (maybe) ash fall out?

Photo Courtesy of Roger Ottmar

More Evidence for Extreme Updrafts

Lareau et al. 2024 (IJWF)

- High Reflectivity Updraft Cores
- Chain-of-thermals within the updraft (>35 m/s)
- Flanking downdrafts

PyroCb Microphysical Processes

SJSU Ka-Band Radar Observations of Mosquito Fire's deep pyroCb on 9/8/2022

Data collected during the California Fire Dynamics Experiment (CALFIDE, NOAA)

Carro; l et al. 2024 (BAMS)

PyroCb Processes

Carro; l et al. 2024 (BAMS)

PyroCb Micro-Physical Processes

Dixie Fire 8/16/2021

- High reflectivity pyroCu/Cb features aloft
- High correlation coefficient indicates hydrometeor returns
- Some clouds evaporate (pyromammatus?)

Plume Structures Linked to Long-Range Spotting

Plume Structures Linked to Long-Range Spotting

Ash/Debris Lofting and Fall Out

Radar Volume of Camp Fire

Camp Fire Plume Cross Section

Spot Fire Data from Maranghides et al. 2021

Ash/Debris Lofting and Fall Out

Radar Volume of Camp Fire

Camp Fire Plume Cross Section

Spot Fire Data from Maranghides et al. 2021

Ash/Debris Lofting and Fall Out

Radar Volume of Camp Fire

Camp Fire Plume Cross Section

Spot Fire Data from Maranghides et al. 2021

This plume structure is common:

What is Falling out of the Plume?

Using Radar To Understand Fire Progression

Conclusions

- Weather radars observe wildfire plume dynamics
- Vortex structure and evolution
- PyroCb updrafts/initiation
- Plume structures linked to long range spotting

What now?

We need a large field campaign that can:

- (a) Quantify the coupled fire-atmosphere dynamics of landscape scale fires (not Rx)
- (b) Contemporaneous fire and plume observations sufficient for model validation (again not Rx!)

X-band Radar: Marshall Fire

- Multiple fire fingers
- Spotting processes
- Downslope winds and mountain wave structure
- Model validation (WRF-FIRE)

Juliano et al. 2023 GRL

2020-09-09 0200 UTC

Summary

Increasing fuel loads results in better atmospheric coupling in WRF-Fire for landscape-scale wildfires

- Realistic fuels (~20 kg m⁻², fuel x8) produces more realistic plumes
 - Deep plume with fire-generated circulations
 - Leeside flow reversal

Future Work

- Changes needed in physical representation of fire processes
 - Post fire-front smoldering and mass fire
 - Long range spotting
- Changes in WRF-Fire fuel representation
 - Including canopy fuels
 - Machine learning for better fuel representation

