

The Impact of Conservation Practices on Post Wildfire Recovery

Shima Shams

Collaborators: Jennifer Boehnert, David John Gagne, John Schreck, Kevin Sampson, and Olga Wilhelmi

Research application laboratory, National Center for Atmospheric Research, Boulder, CO

Project overview, Datasets and methods

Recovery diagnostics and recovery simulations

NCAR RAL

Conclusion, takeaways

NCAR

Conservation Status

USA Protected Areas Database (PAD) provides conservation categories in terms of long-term protection of biodiversity called Gap Analysis Project (GAP).

- GAP Status 1 : Areas managed for biodiversity where natural **disturbances are allowed** to proceed
- GAP Status 2 Areas managed for biodiversity where natural **disturbance is suppressed**
- GAP Status 3 Areas protected from land cover conversion but subject to **extractive uses** such as logging and mining
- GAP Status 4 Areas with **no** known mandate for protection

Project overview

Can we quantify the impact of conservation activities on post-wildfire recovery using remote sensing data?

Can we simulate the post-wildfire recovery rates?

4

- Dominated by conifer and evergreen forested area.
- Dominated by fire regime group 1 (mix severity, interval less than 35)
- Diverse set of management and conservation status

(a

- NCAR RAL
- Where n' is the year that has the minimum of NBR between year of the wildfire (n) or the following year (n+1).
- The advantage of this ratio is normalizing each wildfire event based on its *dNBR*, which corresponds to the wildfire intensity.

NCAR

Recovery based on conservation status and forest type

- Recovery is more lingering in unmanaged areas
- Forest type influence the impact of conservation activities on recovery
 - Large variabilities in recovery of Mesic mixed conifer

%

Mediterranean California Mesic Mixed Conifer Forest and Woodland

Mediterranean California Mixed Evergreen Forest

Driving factors of post wildfire recovery

Can we simulate the post wildfire recovery using ML?

	The list of all predictors		
Predictors used in	predictor	Explanations	
RF simulation			
Conservation index	Conservation Stat	We reordered Gap Status to have more sequentia meaning (as show n in Table 1)	
Burn scar/fire	Area (km2)	The total area of wildfire polygon	
characteristics	f_duration	The duration of wildfire	
	dNBR	Delta NBR as a measure of fire severity	
	f_NBR	The low NBR value after wildfire	
	std_f_NBR	$Max \ NBR \ std \ after \ wildfire \ (bet ween \ n, \ n+1)$	
Pre-fire vegetation	pre_f_NBR	NBR value for the year prior to the wildfire	
status	std_pre_f_NBR	mean std NBR for 5 years pre wildfire	
Landform	physiographical characteristics (the % coverage)		
	peak_ridge_cliff	peak_ridge_warm, peak_ridge, peak_ridge_cool, mountain_divide, cliff	
	flat	upper_slope_flat, lower_slope_flat	
	valleys	valley,valley_narrow	
	warm_slope	upper_slope_warm, lower_slope_warm	
	cool_slope	upper_slope_cool, lower_slope_cool	
	neutral_slope	upper_slope, lower_slope	
Climate variable	The anomalies of $n, n+1, n+5$ is used for each predictor for annual as well as monthly data (total $3*13*2=78$ predictors)		

2-meter temperature

Total precipitation

Т2

Prec

NCAR RAL

Random Forest Results

- For climate predictor, the monthly variables : "m"_
 " the number of the months",
- Anomaly of climatology variables have Clim_z_ with either 0, 1, and 5 which represent the wildfire year, the following year, and 5 years following the wildfire.

NCAR RAL

100 ensemble runs of random selection of validation vs training data. Differences are estimated as the observed 5-year percent NBR recovery minus predicted by the model.

Summary: the preliminary results motivate further investigation

We studied moderate to highly severe burned forest larger than 1 km in subset of California and Oregon

NCAR RAL

- The importance of conservation planning in post-wildfire recovery.
 - More lingering recovery in areas with no known mandate for protection
- The intensity of the impact of conservation status varies for different forest types
 - the importance of management intervention in post wildfire recovery and having priority plans.
- **RF** is able to reasonably simulate moderate recovery rates
- Incorporation of an automated framework of detecting burn areas (MODIS) and tracking vegetation indexes (Landsat), in combination with publicly available conservation status, could be used to track the impact of interventions across the world.

Questions?

Contact info: <u>sshams@ucar.edu</u>

Tweeter account: @Shima_Shams

Table 1. GAP status and their characteristics.

GAP status	Long-term protection of biodiversitv	Extractive usage		Conservation index
1	\checkmark		Disturbance Allowed	1
2 √	1	Disturbance Suppressed	2	
	\checkmark		Suppressed	3
3	\checkmark	\checkmark	Excitative	2
			No protection mandate	0

100 ensemble runs of random selection of validation vs training data. Differences are estimated as the observed 5-year percent NBR recovery minus predicted by the model.

100 ensemble runs of random selection of validation vs training data. Differences are estimated as the observed 5-year percent NBR recovery minus predicted by the model.

Mesic Conifer Forest Validation Traning Low R² thus $R^2 = 75\%$ $R^2 = 5\%$ we did not 40 discuss the premutation 20 predictors of Mesic conifer Differences 0 -20-405-year Percent NBR Recovery 5-year Percent NBR Recovery **Evergreen Forest** Validation Traning $R^2 = 82\%$ $R^2 = 34\%$ 40 20 Differences 0 -20-4050 50 0 0 5-year Percent NBR Recovery 5-year Percent NBR Recovery **GAP** status

The aggregated annual burned area of needleleaf forest where each fire event is larger than 1km in the study area, coverage of each GAP status for each year is shown by color coding for each bar

Creating Annual Time Series of Vegetation Indices Landsat 4-5 Thematic Mapper (TM) Landsat 7 Enhanced Thematic Mapper Plus (ETM+) \bigcirc and Landsat Operational Land Imager (OLI) Bandpass adjustments of OLI bands and Cloud and shadow masks Medoid compositing method Creating annual estimates of reflectances for each patch NCAR

Time series of vegetation indices for 38 years for each patch of the fire event

RAI