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ABSTRACT

This paper explores ground clutter filtering with a class of cancelers that use regression. Regression filters
perform this task in a simple manner, resulting in similar or better performance than the fifth-order elliptic filter
implemented in the WSR-88D. Assuming a slowly varying clutter signal, a suitable projection of the composite
signal is used to notch a band of frequencies at either side of zero Doppler frequency. The complexity of this
procedure is reduced by using a set of orthogonal polynomials. The frequency response of the resulting filter
is related to the number of samples in each input block and the maximum order of approximating polynomials.
Through simulations, it is demonstrated that the suppression characteristic of this filter is better than that of
step-initialized infinite impulse response filters, whereby transients degrade the theoretical frequency response.
The performance of regression filters is tested with an actual weather signal, and their efficiency in ground
clutter canceling is demonstrated.

1. Introduction

Weather radar data are often contaminated with un-
wanted returns from the ground. Therefore, filtering
techniques that attempt to ameliorate these signals are
essential in nearly all Doppler radar systems. If the clut-
ter is not at least partially removed, it can mimic a
meteorological signal and might produce strongly bi-
ased estimates of the three fundamental physical param-
eters (mean power, mean Doppler velocity, and spec-
trum width). In most cases, ground clutter signals have
a narrow spectrum width (long correlation time) com-
pared with weather signals, and their mean Doppler ve-
locity is zero. Thus, a high percentage of this interfering
signal can be reduced if the spectral components in a
band centered at zero frequency (zero Doppler velocity)
are removed by a suitable high-pass filter. Ground clutter
filters (GCFs) with sharp narrow notches have been suc-
cessfully designed and implemented in the WSR-88D
to operate on pulse trains with uniformly spaced pulses,
that is, uniform pulse repetition time (PRT) (Heiss et
al. 1990).

In this paper we address the issue of ground clutter
elimination with regression filters. Besides being easily
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designed and implemented, these filters can be directly
extended to signals that are nonuniformly sampled.
First, some concepts of clutter filtering are presented
with particular emphasis on implementation of such fil-
ters using regression. Once the design variables are de-
scribed and analyzed, the regression filter performance
is assessed. This is accomplished by studying statistical
properties of spectral moments of simulated weather
signals to which ground clutter is superposed. Finally,
a regression filter and a recursive filter designed for the
Next Generation Weather Radar (NEXRAD) are applied
to a time series of actual weather echoes and ground
clutter collected by an operational WSR-88D.

2. Regression ground clutter filter

Ground clutter filters are high-pass filters that ideally
remove frequency components at either side of zero
Doppler velocity and leave the rest of the spectrum al-
most intact. It is very important to recognize this prop-
erty during the design phase because any changes in the
magnitude response will directly bias the estimates of
the three parameters of interest. On the other hand, it
is relatively easy to prove that the phase characteristic
of the filter is immaterial. To observe this, recall that
power, mean velocity, and spectrum width estimates de-
pend on the estimated autocorrelation function of the
filtered weather signal. It is well known that the power
spectral density (PSD) of the output of a linear time-
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FIG. 1. Regression filter block diagram. Signals are processed in
overlapping blocks of Mf samples each.

invariant filter Sy(v) is related to the PSD of the input
Sx(v) by the magnitude square of the frequency response
of the filter, |H(v)|2. That is,

Sy(v) 5 Sx(v)|H(v)|2. (1)

Moreover, the autocorrelation function is uniquely de-
termined by the corresponding PSD through a Fourier
transform pair relation. Because the phase response of
the filter is not involved in this transformations, it has
no effect on the autocorrelation of the filter output
weather signal.

Here we investigate suitability of regression filters
for ground clutter suppression and compare their per-
formance to the fifth-order elliptic infinite impulse re-
sponse (IIR) ground clutter filters implemented in the
WSR-88D. Application of regression filters to clutter
suppression in Doppler ultrasonic blood flow meters was
presented by Hoeks et al. (1991) and extended by Kadi
and Loupas (1995) and Torp (1997) in the context of a
uniform PRT. Application of the first-order regression
GCF to wind profiling radars was demonstrated by May
and Strauch (1998).

Classic digital filters can be divided into two classes:
finite impulse response and infinite impulse response
filters. For either class, filtering is achieved by super-
position of signal samples. Unlike these filters, regres-
sion filters utilize projections of elements from the sig-
nal vector space S onto the clutter signal subspace W
of S. These projections can be efficiently performed if
W is described by an orthogonal basis B. However, or-
thogonality alone is not sufficient to completely specify
this basis. To improve the computational efficiency of
this filtering process, we can limit the functions in B to
polynomials over a set of discrete points on the real
line. Orthogonal polynomials have received much at-
tention in applications such as rational interpolation,
least squares polynomial approximation, and smoothing
of nonlinear functions. Egecioglu and Koc (1992) pre-
sented an efficient algorithm to generate such polyno-
mials over an arbitrary set of points {tm} 5 {t0, t1, . . . ,
tM21}.

Regression filters approximate their input signals with
polynomial functions in the time domain, and their de-
sign is not based on traditional tools such as the impulse
or frequency responses. The clutter signal varies slowly
compared to the weather echo signal and consequently
can be approximated with a polynomial of a relatively
low degree. This approximation is usually performed
using least squares methods or the equivalent transfor-
mation, which projects the input signal samples V(t), t
∈ {tm} onto the subspace W spanned by a basis B con-
sisting of p 1 1 orthonormal polynomials. This set of
polynomials is given by B 5 {b0(t), b1(t), b2(t), . . . ,
bp(t)}, where each bi(t) (0 # i # p) is a polynomial of
ith degree; that is, bi(t) 5 c0i 1 c1i t 1 · · · 1 ciiti. Then,
the projection V̂(t) (i.e., the clutter signal) is obtained
by constructing a linear combination of the elements of

the basis B, that is, the implication is that V̂(t) is in W
and, therefore,

p

V̂(t ) 5 a b (t ). (2)Om i i m
i50

Accordingly, the residue Vf (tm) 5 V(tm) 2 V̂(tm) is
associated with the portion of the input signal that is
not contained in the clutter subspace W [i.e., it is or-
thogonal to V̂(t)]. The ai coefficients are computed using
the classical formula (Papoulis 1986, 146–154)

M21

V(t )b (t )O m i m(V, b ) m50ia 5 5 i 5 0, 1, . . . , p, (3)i M212\b \i 2b (t )O i m
m50

where V and b i are vectors of the sampled input signal
and the bi(t) polynomials, respectively.

Generalization in this analysis is not lost if each el-
ement of B is normalized such that \bi\ 5 1, where \b i\

2

5 (bi, bi). In addition, to simplify the notation define
the basis matrix B and the coefficient vector A as

   b (t ) b (t ) · · · b (t ) a0 0 0 1 0 M21 0   b (t ) b (t ) · · · b (t ) a1 0 1 1 1 M21 1B 5 and A 5 .   
_ _ 5 _ _   

b (t ) b (t ) · · · b (t ) ap 0 p 1 p M21 p   

(4)

Then, assuming a normalized base, Eqs. (2) and (3)
can be rewritten as V̂ 5 BTA and A 5 BV, respectively.
Substitution of (3) into (2) produces V̂ 5 BTBV. The
residue or filtered signal V f can be expressed as

Vf 5 V 2 V̂ 5 (I 2 BTB)V 5 FV, (5)

where I is the identity matrix and the regression filter
matrix is defined by

F 5 I 2 BTB. (6)

The regression filter block diagram is shown in Fig.
1, and from Eq. (5) it is apparent that the filter is linear
(matrix multiplication is a linear transformation), time-
varying, and responds to the general input–output equa-
tion of the form
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M21

y(t ) 5 f (t , t )x(t ); l 5 0, . . . , M 2 1, (7)Ol l m m
m50

where f (tl, tm) are the entries of the matrix F defined
in Eq. (6).

The filter matrix F depends only on p and M, so it
can be precomputed for real-time applications and does
not need to be recomputed if the notch width or sam-
pling scheme do not change. In any case, M need not
be equal to the total number of samples MT in the input
signal used to estimate spectral moments. Implemen-
tation of regression filters for the case MT . M is dis-
cussed by Torres and Zrnic (1998). Hereafter, to avoid
confusion we will use Mf when referring to the length
of the regression filter and MT to indicate the total num-
ber of samples in the time series.

The frequency response H(v) of a linear shift-in-
variant system can be defined as the change in mag-
nitude and phase of a complex exponential signal ejvt,
which is passed through the system. More precisely, let
x(t) and y(t) be the input and output of the filter whose
impulse response is given by h(t). Let x(t) 5 ejvt, then
the output y(t) can be obtained by convolving x(t) with
h(t), that is,

jv (t2t9)y(t) 5 h(t)*x(t) 5 h(t9)x(t 2 t9) 5 h(t9)eO O
t9∈{t } t9∈{t }m m

2jvt9 jvt jvt5 h(t9)e e 5 H(v)e ,O[ ]t9∈{t }m

(8)

in which H(v) describes the frequency response at v.
As previously stated, the regression filter is time vary-

ing. However, the output to a given signal of Mf samples
is always the same regardless of when this block of Mf

samples is encountered in the filtering process. We will
exploit this fact by deriving an expression for the fre-
quency response of the regression filter using Eq. (7)
in an analogous fashion as Eq. (8) following the analysis
by Torp (1997). That is, consider the regression filter
whose input is an exponential of the form ejvt. The
output of this filter is

M 21f

jvtmy(t ) 5 f (t , t )eOl l m
m50

M 21f

5 f (t , t ) exp[ jvt ] exp[2jvt ] exp[ jvt ];O l m m l l1 2[ ]m50

l 5 1, . . . , M .f (9)

Then, by noting the form of (9) we define

H(v, t ) 5 F (2v) exp[2jvt ], (10)l l l

where Fl(v) 5 f (tl, is the discrete FourierM 21 2jvtf mS t )em50 m

transform (DFT) of f (tl, tm) with fixed l. Finally, ac-
counting for all the values of l in the Mf sample segment

M 21f1
H(v) 5 F (2v) exp[2jvt ]. (11)O l lM l50f

Using the results of Eq. (6), each entry in F is given by

p

f (t , t ) 5 d(t 2 t ) 2 b (t )b (t ), (12)Ol m l m i l i m
i50

where d(t) is the usual discrete-time impulse sequence.
The DFT of (12) is

p

F (v) 5 exp[2jvt ] 2 b (t )B (v), (13)Ol l i l i
i50

where Bi(v) is the DFT of bi(t). Then,

M 21p f1
H(v) 5 1 2 B (2v) b (t ) exp[2jvt ] , (14)O Oi i l l[ ]M i50 l50f

and finally the frequency response of the regression filter
is given by

p1
2H(v) 5 1 2 |B (v)| . (15)O iM i50f

Note that because H(v) is real, the phase response of
this filter is constant and we only need to be concerned
about its magnitude response. Also, as depicted in Fig.
1, H(v) consists of a direct path, the ‘‘1’’ in Eq. (15),
and a weighted path given by the least squares fit pro-
jection, which corresponds to the second term.

The frequency response of the regression filter de-
pends on the number p of elements in B (i.e., the max-
imum degree of the polynomials used for approxima-
tion) and on the number of samples Mf in each pro-
cessing block. High-frequency signals exhibit rapid
changes in time and hence they are better approximated
as p increases. Therefore, by increasing p, we allow
high-frequency components to be subtracted from the
input signal, and this results in a broader notch width.
On the other hand, for a fixed p higher frequencies are
eliminated if the filter window Mf is shorter. That is,
polynomials of a relatively low degree can still ‘‘fol-
low’’ high-frequency components if the filter window
is ‘‘short.’’ Consequently, the notch width of the re-
gression filter increases when Mf decreases. This de-
pendence is illustrated in Figs. 2a and 2b for the uniform
PRT scheme. From these plots, we can confirm that the
notch bandwidth increases with p and decreases as Mf

increases.
The WSR-88D fifth-order elliptic GCF can be pro-

grammed for three different suppression levels: low, me-
dium, or high suppression. These selections correspond
to notch widths of 2.36 (61.18), 3.12 (61.56), and 5.06
m s21 (62.53 m s21), which do not change with the
number of samples MT (Chrisman et al. 1995). The
steady-state frequency responses of the low, medium,
and high suppression fifth-order elliptic GCF for the
WSR-88D are also plotted for comparison in Fig. 2
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FIG. 2. Regression filter frequency response (solid lines) with (a) p and (b) Mf as parameters. The frequency responses of the low (L),
medium (M), and high (H) suppression fifth-order elliptic filter used in the WSR-88D are also included (dashed lines) for comparison. Two-
pulse extension of the step initialization process is used to improve the response of the fifth-order elliptic filter, that is, suppress the transient
due to the step inputs at the beginning of pulse bursts for velocity estimation. Bold lines correspond to the filters analyzed in section 4.

FIG. 3. Regression filter 3-dB notch width vs the number of samples
and order of approximating polynomials (solid lines). Notch widths
of the WSR-88D filters are indicated with dashed lines. Note that the
regression filter with p 5 3 and the medium suppression WSR-88D
ground clutter filter have matched notch widths for Mf 5 34. These
two filters (bold lines) are compared in section 4.

(dashed lines). The general form of the transfer function
of this filter is

H (z)WSR-88D

21 22 23 24 25b 1 b z 1 b z 1 b z 1 b z 1 b z0 1 2 3 4 55 , (16)
21 22 23 24 251 2 a z 2 a z 2 a z 2 a z 2 a z1 2 3 4 5

where the coefficient ai’s and bi’s are obtained from the
classical design formulas for digital elliptic filters, as
given in Parks and Burrus (1987).

During scans at elevation angles larger than 1.58 the
WSR-88D transmits an interlaced waveform whereby a
batch of short PRTs is for Doppler measurements. To
achieve the indicated frequency response, the GCF uses
a two-pulse extension of the step initialization process,
as described by Sirmans (1992). This process consists
of setting the filter memories to steady state, assuming
a DC clutter signal with amplitude equal to the first
pulse in the batch. For this analysis, we adopt the num-
ber of samples MT 5 34 in the input signal. An increase
in the number of samples causes a sharper notch, which
tends to the theoretical steady-state response of (16). In
the WSR-88D, the actual number of samples in a radial
depends on the volume coverage pattern (VCP) mode
and can be from 33 to 111 samples. Therefore, the
adopted MT 5 34 represents a worst-case filter fitting
scenario.

Figure 3 shows how the filter’s 3-dB notch width
depends on the number of samples for both classes of
GCFs. As a useful tool for further comparison, we find
a direct equivalence between each suppression level of
the fifth-order elliptic filter and the order of approxi-
mating polynomials in the regression filter. Observe, for
instance, that for p 5 3 and Mf 5 34, the notch width
of the regression filter matches that of the medium sup-
pression GCF in the WSR-88D. However, the regression
filter achieves a sharper transition region. In section 4,
we compare the two filters having this matching con-
dition.
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FIG. 4. Clutter filtering process with a regression filter. (a) Spectrum of a weather signal contaminated with
ground clutter. (b) Time-domain representation of the composite signal. The dashed line is the third-order polynomial
fit to this signal, that is, the estimated clutter. (c) Filtered signal in the time domain used to determine the three
fundamental physical parameters (mean power, mean Doppler velocity, and spectrum width). (d) Spectrum of the
filtered signal.

The regression filter has several attractive properties
compared to the GCF currently implemented in the
WSR-88D. While the latter is greatly influenced by the
filter’s transient response characteristics, the regression
filter inherently avoids these transients (i.e., these filters
do not cause transients). Moreover, regression filter’s
design methods diverge from the ones used with clas-
sical filters because their implementation consists of a
matrix multiplication instead of a set of equations eval-
uated recursively at each time step. Thus, regression
filters are well suited for modern array processors.

3. Performance analysis of the regression filter

In this section, we describe a series of simulations to
establish the performance of the regression filter and
compare the results with the fifth-order elliptic GCF
implemented in the WSR-88D. The clutter signal is
modeled as a narrowband Gaussian process with zero
mean velocity. This clutter and white noise are added
to a synthetic weather signal (Zrnic 1975). Then, the
composite signal is filtered to remove the ground clutter,

and finally the first three moments of the weather Dopp-
ler spectrum are estimated using the classical pulse pair
algorithm. This process is shown in Fig. 4.

Two parameters of interest for these simulations are
the signal-to-noise ratio (SNR) and the clutter-to-signal
ratio (CSR), which are defined as SNR (dB) 5 10
log10(S/N) and CSR (dB) 5 10 log10(C/S), where S, C,
and N are signal, clutter, and noise powers, respectively.
The clutter filter suppression ratio (CFSR), a measure
of the filter’s performance, is defined by

CFSR (dB) 5 10 log10( Pout/Pin).21Gnoise (17)

In this equation Pin and Pout are the powers measured at
the input and output of the filter, respectively, and Gnoise

is the noise gain of the filter defined by Pout/Pin when
the input to the filter is white noise. Note that Gnoise

depends only on the frequency response of the filter,
and for the regression filter can be computed by using
(15). The CFSR in the absence of weather signal of both
the regression filter and the WSR-88D elliptic filter (de-
scribed in section 2) is depicted in Fig. 5. Note that for
the most common case of narrow clutter spectrum



OCTOBER 1999 1369T O R R E S A N D Z R N I C

FIG. 5. Clutter suppression ratio vs the clutter signal spectrum
width. Solid lines correspond to regression filters for different values
of p and dashed lines to the elliptic filters (low, medium, and high
suppression) implemented in the WSR-88D.

FIG. 6. Suppression ratio for the weather signal vs its mean velocity.
Here, sy 5 4 m s21 (median value in severe storms). Solid lines
correspond to regression filters for different values of p and dashed
lines to the elliptic filters (low, medium, and high suppression) im-
plemented in the WSR-88D.

FIG. 7. Suppression ratio of regression and elliptic GCFs vs weather
signal mean velocity for a CSR of 20 dB. Solid lines correspond to
regression filters for different values of p and dashed lines to the
elliptic filters (low, medium, and high suppression) implemented in
the WSR-88D.

widths (i.e., sc , 0.5 m s21), the suppression ratio of
the regression filter with p 5 4 is at least 10 dB better
than the one achieved by the high-suppression elliptic
GCF. In general, the regression filter performs better
than the comparable elliptic filter, especially if the spec-
trum width of the clutter is very narrow.

The suppression of weatherlike signals, by these fil-
ters, is plotted in Fig. 6, where the mean velocity chang-
es from 0 to 25 m s21 and the spectrum width is set at
4 m s21, which is the median found in severe storm
observations (Doviak and Zrnic 1993). Over 1 dB of
suppression is observed for signal mean velocities be-
low 4.5–6.5 m s21, depending on the notch width of the
filter. At that, performances of regression filters are com-
parable to the elliptic filters of corresponding notch
width. Similar results hold for weather signals with
spectrum width of 1 m s21 (typical of stratiform rain)
except the 1-dB suppression is for velocities below 3–5
m s21. These curves (Fig. 6) indicate the power esti-
mation biases one can expect if the mean velocity of
the weather signal is close to zero. However, when the
mean velocity of the weather signal is well away from
0 m s21, neither filter biases the power estimates.

For a more realistic situation, a weather signal was
combined with the ground clutter and the ratio Pout/S
was computed for different CSRs. This analysis is
shown in Fig. 7 for a CSR of 20 dB. The clutter spectrum
width is set at 0.28 m s21, which is the same as the one
used for testing the WSR-88D ground clutter filter per-
formance (Sirmans 1992). Measurements on the WSR-
88D in Norman, Oklahoma, indicate that the mean of
clutter spectrum width is 0.25 m s21 for a scan rate of
128 s21; therefore, 0.28 m s21 is in the worst-case cat-
egory. Figure 7 confirms that the reflectivity estimates
can have a significant negative bias if the mean Doppler

velocity of the weather signal is such that its spectrum
overlaps the one of the ground clutter. In addition, we
observe a small positive bias (WSR-88D low suppres-
sion) if the mean Doppler velocity departs from the
origin because the clutter signal is not fully removed
by the elliptic filter. For the CSR of 40 dB (not shown),
we found that the elliptic GCF does not remove the
clutter signal completely, leaving an almost constant
bias along the entire velocity range. Similar bias was
present for the second-order regression filter, but the
fourth-order regression filter had no bias. Evidently, this
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FIG. 8. Pulse-pair algorithm statistical performance: bias and standard deviation of mean Doppler
velocity and spectrum width estimates (a) vs the weather signal mean velocity and (b) vs the
weather signal spectrum width. Parameters for the simulation are indicated in the figure. Solid lines

effect gets worse for larger CSR and wider clutter spec-
trum width, but it can be controlled by adjusting the
ground clutter filter frequency response.

As the ultimate goal is to accurately recover the three
first spectral moments of the weather signal, the pulse
pair statistical performance for different CSRs was com-
puted versus (i) the weather signal spectrum width and
(ii) the weather signal mean velocity for both regression
and elliptic WSR-88D filters. Consider first the case
where the weather signal mean velocity is a parameter
and the spectrum width is randomly selected from the
interval (2, 6) m s21 (Fig. 8a). Then, there are large
positive biases in both the mean velocity and the spec-
trum width estimates if the true mean velocity of the
weather signal is less than approximately 5 m s21. This
is due to overlap of the weather spectra and clutter notch.
A part of the spectrum close to zero velocity is elimi-
nated by the filter; therefore, the nonfiltered components
bias the velocity upward. Mean velocity bias for the
regression filter is about 0.25 m s21 larger than for the
elliptic filter at y , 10 m s21. The standard deviations
of the velocity estimates are comparable and very close
to the performance of the pulse-pair algorithm in the
absence of clutter. The bias and standard deviation of
spectrum widths are smaller (at y . 8 m s21) for the
regression filter.

Next, we take the weather-signal spectrum width as
a parameter and randomly select its mean velocity from
the interval (225, 25) m s21 (Fig. 8b). Notice that var-
iations in the mean velocity bias and the standard de-
viation increase with the weather-signal spectrum width.
This effect is consistent with the algorithm performance

and slightly more evident if there is contamination by
the clutter signal. This is because the weather signal
extends over a larger portion of the spectrum and it is
more likely to be adversely shaped by the ground clutter
filter. The bias in y and the standard deviations for the
two filters are comparable. A slightly smaller bias and
standard deviation are seen for the regression filter. Be-
cause the GCF does not remove the clutter signal com-
pletely, for small spectrum widths, we observe a positive
bias in the spectrum width estimates, which increases
with the CSR. From these figures, we conclude that
influences of the regression filter and the corresponding
elliptic filter on the statistical performance of pulse-pair
estimators are comparable.

4. Application of filters to the WSR-88D data

Time series data (i.e., I and Q samples) have been
collected from a WSR-88D in Memphis at the lowest
elevation of 0.58, while the antenna was scanning at 128
s21. Sixty-four samples of the in-phase component (Fig.
9a) reveal a slowly varying clutter signal and possibly
weak weather signal. The Doppler spectrum (Fig. 9b)
has a peak at zero, which is 75 dB above the receiver
noise level. This large spectral dynamic range has been
routinely observed on both Memphis and Norman WSR-
88D and testifies to the very high quality of the system.
The spectrum width of this ground clutter is 0.23 m s21,
the CSR is 33 dB and the SNR is 26 dB.

Figure 10 shows the signals produced by application
of the regression filter with p 5 3 (solid lines) and the
‘‘medium suppression’’ elliptic filter (dashed lines). The
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FIG. 8. (Continued) correspond to the regression filters for p 5 3 and dashed lines to the
medium-suppression elliptic filter implemented in the WSR-88D.

FIG. 9. Data collected with the WSR-88D in Memphis at an ele-
vation of 0.58 and a range of 15 km. (a) In-phase component and (b)
Doppler spectrum of the time series to which the von Hann window
has been applied.

regression filter with Mf 5 34 is applied to the 64 input
samples similar to a moving average filter. Note how
the in-phase signal after regression filtering has no dis-
cernible slow varying component, whereas after filtering
with the elliptic filter it does. This is also reflected in
the spectral shapes at and close to zero velocity. The
clutter spectrum has been suppressed at least 40 dB

below the weather peak after application of the regres-
sion filter (Fig. 10b, solid line) and it is slightly above
the weather peak after application of the elliptic filter
(Fig. 10b, dashed line). Note that although the notch
widths of the two filters are matched, it is the response
in the transition region of the regression filter that makes
it the better of the two.

5. Conclusions

We have explored the suitability of regression filters
for ground clutter suppression in Doppler weather ra-
dars. First, a brief review of how to design these filters
and determine the frequency response was presented.
Parameters that control the frequency response are the
number of samples to which regression is applied and
the degree of the regression polynomial. The increase
in the polynomial degree (p) broadens the filter’s notch
width because higher frequencies are subtracted from
the signal. The notch width also broadens if the number
of samples (Mf ) decreases because then the regression
polynomial better replicates high frequency compo-
nents. Different families of approximating polynomials
only affect the computational complexity of the imple-
mentation, which is considerably reduced if this set is
orthonormal. Regression filters are easy to implement
and do not require initialization such as is needed in the
Doppler mode of data processing at higher than 1.58 in
elevation on the WSR-88D. Preliminary studies and
simulations indicate that the suppression characteristics
of regression filters meet or exceed those of step-ini-
tialized IIR filters (with matched notch width), in which



1372 VOLUME 16J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 10. Time series data filtered with the medium-suppression
regression filter ( p 5 3, solid line) and filtered with the medium
suppression WSR-88D ground clutter filter (dashed line). (a) In-phase
filtered component and (b) Doppler spectrum of the filtered signal
(weighted with the von Hann window).

transients degrade the theoretical frequency response.
For p 5 3 and Mf 5 32, the regression filter approxi-
mates the statistical performance of the medium-sup-
pression fifth-order elliptic filter in the WSR-88D. Com-
parison of the two filters (with matched notch width)
on an actual weather signal, collected by an operational
WSR-88D, indicates that the regression filter performs
better. This is due to the superior shape of the regression
filter’s frequency response in the cutoff region.
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