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SNR, the rmse(�̂��) using only the training sequence is not sufficiently
low to yield dependable bit-estimates. In particular, for high values of
SNR, where the MAI dominates, the WLS detector is very sensitive to
errors in the time-delay estimates. This observation is consistent with
results reported in, e.g., [7].

On the other hand, iterating twice and using theẑ1 matrix to improve
the time-delay estimates leads to a substantial decrease in the bit-error
probability. This example thus highlights the main idea of the method
presented here. Significant improvement in performance is possible
by looking at the channel-parameter estimation and symbol detection
problems jointly by iterating and exploiting known signal structure.
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Multiple Fully Adaptive Notch Filter Design Based on
Allpass Sections

Victor DeBrunner and Sebastian Torres

Abstract—We develop a canonical, adaptive cascade-structure IIR
notch filter to detect and track multiple time-varying frequencies in
additive white Gaussian noise. The algorithm uses allpass frequency
transformation filters and a truncated gradient. Simulations indicate that
our algorithm is computationally simple, converges rapidly, and has good
frequency resolution.

Index Terms—Adaptive filters, allpass filters, notch filters.

I. INTRODUCTION

The problem of designing adaptive notch filters (ANF’s) for
retrieving narrowband signals immersed in broadband noise was first
introduced in [1], although this ANF did not consider tracking. The
constrained ANF in [2] and [3] used a simplified gradient. Further
improvement resulted by constraining the zeros of the filter to lie
on the unit circle to form sharp notches [4]. Constraining the filter
poles to lie on the same radial line as the zeros, but slightly inside the
unit circle, was developed independently in [5] and [6]. These ideas
were refined in [7]. We estimate both the central frequency and the
bandwidth of the notch filter as in [8], resulting in improved tracking
capabilities. We also incorporate correction mechanisms for resolving
closely spaced sinusoids as well as very low or very high frequencies.
Multiple sinusoids are easily incorporated. Our scheme is based on
frequency transformations for digital filters; consequently, we call it
the frequency-transform based notch filter (FTBNF).

II. FREQUENCY-TRANSFORMBASED NOTCH FILTER

We introduce a new parameterization for an adaptive notch filter by
using the frequency transformation of [9] to convert a lowpass notch
into a variable-frequency notch. This allows us to preserve spectral fea-
tures after transformation and retain a low complexity implementation.
The adaptation uses a recursive prediction error (RPE) algorithm that
incorporates an adaptive time-varying notch bandwidth and forgetting
factor. We begin with the analysis for the single-sinusoid case that ap-
proximately follows [7].

Consider the first-order notch filter (a lowpass filter structure) given
by

H0(z) =
1 + z�1

1 + �z�1
: (1)

This filter is a notch filter with center frequency!0 = �. The
filter is limited since the parameter we can modify� is related
only to the filter bandwidth. Applying the frequency transformation
z�1 ! z�1Hap(z), whereHap(z) is a first-order allpass filter yields
the filter
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Hn(z) =
1 + z�1Hap(z)

1 + �z�1Hap(z)
�

Bn(z)

An(z)

=
1� 2�z�1 + z�2

1� (1 + �)�z�1 + �z�2
: (2)

This filter has zeros on the unit circle atz0 = e�j! , where!0 =
cos�1 �. For� ! 1, the poles are located atzp � �e�j! , thus ap-
proximating the constrained notch filter in [5]. The bandwidth is

BW = 2cos�1 2�

1 + �2
: (3)

Adding the constraint

�
2
<

4�

(1 + �)2
(4)

ensures that the filter has complex-conjugate poles while constraining
the operating range of the ANF.

We adapt on� and� independently. For the FTBNF, we use RPEM.
Using the shift operatorq�1 defined byq�n[x(t)] = x(t � n) with
integern, we can writeAn(q

�1)e(t) = Bn(q
�1)y(t), whereAn and

Bn retain the parameterization as in (2). Then, using techniques from
[10], the gradient is

 
�(t) �

1

An(q�1)
q
�1 @Hap(q

�1)

@�
[y(t)� �e(t)]: (5)

The adaptive parameter is�; its derivatives are taken with� = �(t�
1). We use the gradient truncation

@Hap(q
�1)

@�

=
@

@�

Bap(q
�1)

Aap(q�1)
��������!

truncation

1

Aap(q�1)

@Bap(q
�1)

@�
(6)

to simplify the gradient as

 
�(t) �

�e(t� 1)� y(t� 1)

1� (1 + �)�q�1 + �q�2
: (7)

The accuracy of the RPE algorithm depends on both the forgetting
factor of the estimation algorithm and the pole radius of the notch filter
[8], [11]. Consider that as�! 1, the filter transients endure longer and
the slower the filter can track rapidly changing signals. Therefore, we
should vary� according to the input signal [8]. As for�, we compute
the simplified (and independent) gradient

 
�(t) =

@e(t)

@�
�

�e(t� 1)� e(t� 2)

1� (1 + �)�q�1 + �q�2
: (8)

We note that the optimal value for� and the commonly used forgetting
factor� are equivalent [11], [12]. However, it is not effective to adapt
both parameters as one since� may vary relatively too quickly, and the
algorithm is known to be very sensitive to variations of�. Thus, we
update� as in [11].

When using the above algorithm, we must ensure the stability of the
IIR filter at each step of the recursion. Thus, we constrain the parame-

Fig. 1. Estimated frequency versus true frequency for the FTBNF (average of
10 runs).

Fig. 2. Extended RPEM for FTBNF;n is the number of cascaded second-order
IIR sections.

ters� and� to lie inside the stability region of the filter. The stability
region is the well-known stability triangle. Unstable poles are projected
inside the unit circle, and the convergence is not altered [13].

Cascading several of these sections allows us to handle multiple sinu-
soids of different frequencies. In this case, the objective is to minimize
the output from each individual section. Our RPEM is given in Fig. 2.
This extended filter inherits all the properties of the single-sinusoid al-
gorithm:
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• stability monitoring;
• unimodality of the search surface;
• gradient simplicity;
• algorithm structure.

Its performance evaluation is discussed in the next section, where
a comparison to the Nehorai’s (NANF) and Chamber’s (CANF)
approaches is performed.

III. PERFORMANCEEVALUATION AND COMPARISON

We have extensively compared our method with two existing
schemes [5], [7]. The simulations are programmed in MATLAB™
and run on an IBM PC compatible computer. Because of the brief
nature of this correspondence item, only a few results are noted. The
general input signal has the form

y(t) =

n

i=1

Ci sin[�'i(t) + �i] + w(t); t = 1; 2; � � � ; N: (9)

The noise processw(t) is a zero-mean, white Gaussian process with
variance�2, �i are the random initial phases uniformly distributed in
the interval[0; 2�), and'i(t) is the normalized phase for theith sinu-
soid. For the stationary case,'i(t) = fit, and consequently,fi(t) = fi
is constant. There are several items of concern.

• Algorithm Convergence: When choosing�, it is important to con-
sider the effect on the notch bandwidth, the shape of the error per-
formance surface, and the range of reachable frequencies

cos�1
2
p
�

1 + �
< ! < cos�1 �

2
p
�

1 + �
(10)

obtained by applying the constraint in (4) and using the relation-
ship� = cos!. As � ! 1, theBW ! 0 , and the reachable
range of frequencies becomes the full interval[0; �].

• Estimation Accuracy and Operation Range: A plot of the true
frequency versus the estimated frequency is presented in Fig. 1.
Here, the constraint in (4) is included because the convergence to
either the very low or the very high frequencies is impeded when
using an adaptive�. Fortunately, projecting� into the region of
interest given by (10) alleviates this problem.

• Filter Tracking Capabilities: Analysis methods can be found in
[14] and [15].

We have learned the following.

• Stationary Single Sinusoid: The FTBNF always converges; con-
vergence can be slower than for the NANF or CANF. The NANF
and CANF do not converge for very low or very high frequencies.

• Frequency-Hopping Single Sinusoid: In the NANF, the evolution
of � does not depend on the input signal. Consequently, it cannot
follow the frequency hop when it occurs too “late.” The CANF
can follow the hop, but convergence is slower than the FTBNF
due to its fixed�.

• Stationary Multiple Sinusoids: Convergence to the correct
frequencies is assured only by implementation of a “corrective
mechanism” that employs a switch between an adaptive and a
deterministically changing�. The NANF does not exhibit good
performance, and the CANF will often have several cascaded
sections converge to the same sinusoid.

• Nonstationary Multiple Sinusoids: We examined the performance
for frequency hops, chirps, and polynomial-phase components.
The NANF cannot track these (see the single nonstationary si-
nusoid discussion). The CANF performs very poorly on the FM
signals, and its convergence in the case of the frequency hops is
slow. The FTBNF tracks sinusoids through frequency crossover.

• Statistical Analysis: We repeated the test from [5] for the single
stationary sinusoid. Statistically, the NANF is superior, with our
FTBNF performing the worst. This result is expected because of
the adaptive� that allows us to use it for frequency tracking.

• Computational Complexity: The NANF has an exponential com-
plexity, whereas the CANF and the FTBNF have a linear com-
plexity, with the FTBNF being slightly more complex than the
CANF.

IV. CONCLUSIONS

We develop an adaptive notch filter algorithm for tracking nonsta-
tionary narrowband signals. We use a frequency transformation net-
work to realize the notch filter that yields a low-complexity gradient
computation. We have a simple stability check, even when used for
multiple narrowband components.
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