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ABSTRACT

A method for estimation of spectral moments on pulsed weather radars is presented. This scheme operates
on oversampled echoes in range; that is, samples of in-phase and quadrature-phase components are collected at
a rate several times larger than the reciprocal of the transmitted pulse length. The spectral moments are estimated
by suitably combining weighted averages of these oversampled signals in range with usual processing of samples
(spaced at the pulse repetition time) at a fixed range location. The weights in range are derived from a whitening
transformation; hence, the oversampled signals become uncorrelated and, consequently, the variance of the
estimates decreases significantly. Because the estimate errors are inversely proportional to the volume scanning
times, it follows that storms can be surveyed much faster than is possible with current processing methods, or
equivalently, for the current volume scanning time, accuracy of the estimates can be greatly improved. This
significant improvement is achievable at large signal-to-noise ratios.

1. Introduction

Doppler weather surveillance radars probe the at-
mosphere and retrieve spectral moments for each res-
olution volume in the surrounding space. In computing
these moments, it is customary to average signals from
many pulses to reduce the statistical uncertainty of the
estimates. With such processing, the variance reduction
of averaged estimates is inversely proportional to the
equivalent number of independent samples, which de-
pends on the correlation between samples r and the total
number of averaged samples (or pulses) M (Walker et
al. 1980). The number of samples available for aver-
aging is determined by the pulse repetition time Ts and
the dwell time, which is usually controlled by the re-
quired azimuthal resolution. If averaging along sample
time is not enough to keep estimation errors below ac-
ceptable limits, it is possible to trade range resolution
for estimate accuracy by averaging a few samples along
range time. From an operational point of view, we are
faced with conflicting requirements. On the one hand,
large estimation errors restrict the applicability of
weather surveillance radars for precise quantification
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and identification of weather phenomena. On the other
hand, the need for faster updates between volume scans
calls for faster antenna rotation rates, which limit the
number of samples available for each resolution volume.
As mentioned before, the number of samples is inversely
related to the variance of estimates.

Several solutions have been proposed to reduce spec-
tral moment errors in weather surveillance radars. In the
quest for finding better estimators of spectral moments,
Zrnić (1979) showed that maximum likelihood (ML)
estimators yield errors one order of magnitude less than
those obtained with conventional autocovariance meth-
ods. Later, Frehlich (1993) improved Zrnić’s results and
derived simplified expressions to test new estimators
based on the ML approach. Due to the complexity of
ML estimators, researchers focused on ways to simplify
spectral moment estimators by assuming knowledge of
some of the underlying parameters of the weather signal.
Bamler (1991) computed the Cramer–Rao lower bound
(CRLB) for Doppler frequency estimates assuming both
the correlation (or spectrum) of samples and signal-to-
noise ratio (SNR) are known. Later, Chornoboy (1993)
obtained an optimal estimator for Doppler velocity that
is simpler than ML formulations, but again, the SNR
and the spectrum width were assumed to be known.
Summarizing, ML estimators provide better accuracy
compared with classic estimators (Zrnić 1979) and are
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only moderately complex if the spectrum width is
known a priori. However, this last assumption restricts
their applicability because the correlation coefficient of
the weather echo along sample time is not known and
must be estimated. That is, to estimate spectral mo-
ments, the joint distribution of signal power, mean
Doppler velocity, and spectrum width would need to be
calculated, which turns out to be computationally very
intensive. Dias and Leitão (2000) proposed ML esti-
mators that do not exhibit the characteristic computa-
tional burden. They derived a nonparametric method to
obtain ML estimates of spectral moments from weighted
sums of autocovariance estimates; the only assumption
is that the power spectral density of the underlying pro-
cess is bandlimited.

Schulz and Kostinski (1997) suggested that knowl-
edge of the correlation coefficient of weather-echo time
series could improve the variance of spectral moment
estimates. By means of the whitening transformation
(i.e., a linear operation that decorrelates echo samples),
they devised estimators that theoretically achieve the
CRLB. Further, Koivunen and Kostinski (1999) ex-
plored practical aspects of the whitening transformation
on estimation of signal power. A principal obstacle to
the application of the whitening transformation on the
time series is the need to know (or estimate) the cor-
relation coefficient of the signal. These authors suggest
ways to overcome this difficulty and call for an exper-
imental study to verify the technique. Using the whit-
ening approach, Frehlich (1999) investigated the per-
formance of ML estimators of spectral moments under
the assumption of a known spectrum width. Although
Frehlich concluded that the estimator derived by Schultz
and Kostinski cannot be applied to the case of finite
SNR, Kostinski and Koivunen (2000) showed that the
problem is not in the estimator but in the Gaussian as-
sumption for the Doppler spectrum. In their work, they
suggested simple numerical recipes intended to avoid
the so-called Gaussian anomaly.

Range oversampling to improve the estimates of per-
iodograms was explored by Urkowitz and Katz (1996).
They acknowledged that the periodograms for each
range location are correlated; they computed the equiv-
alent number of uncorrelated range samples and showed
that the variance reduction is not optimal. Strauch and
Frehlich (1998) considered oversampled signals in
range to estimate Doppler velocity within one pulse.
This approach fails because the phase shift within a
pulse is smaller than the uncertainty of the estimates;
the authors point out that simple averaging is not enough
to achieve the required equivalent number of indepen-
dent samples. Acquisition and processing of samples
over finer range scales was investigated also in the con-
text of pulse compression. Pulse compression can be
applied to increase the equivalent number of indepen-
dent samples by averaging high-resolution estimates in
range (Mudukutore et al. 1998). However, most ground-
based weather surveillance radars do not use pulse com-

pression due to the required larger transmission band-
widths.

Range oversampling and whitening can be used to
increase the equivalent number of independent samples
without increasing the transmission bandwidth. The
main advantage of this technique is that the whitening
transformation is derived from a known correlation
function. In a rather short but important study, Dias and
Leitão (1993) derived an iterative technique to obtain
ML estimates of spectral moments. They consider both
the time and space variables and assume a known cor-
relation in range. Implicit in their solution is whitening
of the signals in range; thus, it is likely the earliest
application of this technique to radar remote sensing.
More recently, Fjørtoft and Lopès (2001) proposed a
method for estimating the reflectivity in synthetic ap-
erture radar (SAR) images with correlated samples (pix-
els). The method is based on a modified whitening trans-
formation that exhibits low computational complexity
and is suitable for oversampled data.

This paper describes an application of the whitening
transformation in range that increases the equivalent
number of independent samples while keeping the dwell
time constant with no significant degradation of the
range resolution. Obtaining more independent samples
reduces the estimate errors at the same antenna rotation
rate or speeds up volume scans while keeping the errors
at previous levels. Our work has been inspired by Schulz
and Kostinski (1997) but shares some common elements
with the work of Dias and Leitão (1993). In simulation
studies we consider a receiver with a large bandwidth
and a perfect rectangular pulse. We use autocovariance
processing in sample time and examine in detail the
effects of white noise. At the end we briefly describe
some other practical aspects and trade-offs.

2. Why whitening?

Current implementations of spectral moment esti-
mators use a simple method of averaging samples in
range at the expense of degradation in range resolution.
Simple averaging, however, does not yield the best per-
formance when the observations are correlated. Schulz
and Kostinski (1997) computed the variance bounds for
reflectivity estimates and demonstrated that they do not
depend on the correlation structure of the observations.
Hence, it can be inferred that it is not the correlation
between observations that limits the accuracy of a given
estimator but the way those observations are used to
compute the estimates. Therefore, it is reasonable to
think that knowledge of the correlation coefficient
r(mTs) could be used to formulate estimators that attain
the CRLB. In their work, Schulz and Kostinski proposed
whitening the time series data along sample time to
produce uncorrelated samples. The main drawback for
this technique is that the whitening transformation de-
pends on other meteorological parameters such as the
spectrum width. Dias and Leitão (1993) derived man-
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FIG. 1. Depiction of sampling/oversampling in range and process-
ing of the signals. (a) Samples in range with spacing equal to the
pulse length t; standard processing to obtain correlation estimates is
indicated; (b) oversampling in range; (c) zoomed presentation of ov-
ersampled range locations where range samples to be whitened with
matrix W are indicated; (d) processing of whitened samples to obtain
estimates of correlations in range and average of these estimates in
range to reduce the statistical errors.

ageable approximate solutions to the ML estimators of
spectral moments for signals that are oversampled in
range. Their solution, although not immediately trans-
parent to readers, amounts to whitening the samples in
range and applying Fourier transforms for estimating
spectral moments.

We suggest combining the whitening transformation
of samples in range with autocovariance processing in
sample time and thus improving the spectral moment
estimates. The proposed processing increases the equiv-
alent number of independent samples in a simple manner
while the sacrifice in range resolution is minimal and
the transmission bandwidth is not broadened. While the
correlation of samples separated by Ts needs to be es-
timated for each particular case (it depends on the me-
teorological conditions being observed), samples spaced
in range exhibit a correlation coefficient that can be
exactly computed a priori; the underlying assumption
here is that the mean echo power changes very little
over the averaging interval in range. We elaborate more
on this fundamental constraint later. By exactly knowing
the correlation coefficient, it is possible to apply the
whitening transformation without worrying about the
pitfalls originating from an estimated quantity. As a re-
sult, the equivalent number of independent samples be-
comes equal to the number of available samples, and
the variance reduction through averaging is maximized.
Maximization of the equivalent number of independent
samples leads to the following.

• For the same uncertainty as that obtained with cor-
related samples, faster scan rates are possible, as the
total number of samples M for a resolution volume is
determined by the pulse repetition time and the dwell
time. Rapid acquisition of volumetric radar data has
significant scientific and practical ramifications. For
example, observations at minute intervals are required
to understand the details of vortex formation and de-
mise near the ground. Even faster rates of volumetric
data are required to determine the presence of trans-
verse winds. Fast update rates would also yield more
timely warnings of impending severe weather phe-
nomena such as tornadoes and strong winds.

• For the same scanning rates, lower uncertainties can
be obtained, making the use of polarimetric variables
feasible for accurate rainfall estimation and hydro-
meteor identification.

With the advent of digital receivers (Brunkow 1999),
oversampling is indeed feasible (Ivić 2001). Therefore,
it is possible to maintain the same current radar capa-
bilities (as with a digital matched filter in classical pro-
cessing) while adding, in parallel, a set of more reliable
estimates obtained from whitened oversampled range
data.

3. The whitening transformation
The procedure (as depicted in Fig. 1) begins with

oversampling in range so that there are L samples during

the pulse duration t (i.e., oversampling by a factor of
L). Assume that a range of depth ct (where c is the
speed of light) is uniformly filled with scatterers, which
is a common occurrence for relatively short pulses. For
convenience, the contribution from the resolution vol-
ume to the received sampled complex voltage V(nTs)
5 I(nTs) 1 jQ(nTs) at a fixed time delay nTs can be
decomposed into subcontributions s(lto, nTs) from L
contiguous elemental shells or ‘‘slabs,’’ each ct/2L
thick. Each of these is an equivalent scattering center.
For simplicity to and Ts are dropped hereafter so the
indices l and n indicate range-time increments to (sam-
pling time) and sample-time increments Ts (pulse rep-
etition time), respectively. The voltages s(l, n) are iden-
tically distributed, complex, Gaussian random variables,
where the real and imaginary parts have variances s2,
and the average power of s(l, n) is 5 2s2. A pulse2s s

with an arbitrary envelope shape p( l) induces weighting
to the contributions from contiguous slabs such that the
composite voltage after synchronous detection is

V(l, n) 5 I(l, n) 1 jQ(l, n)

L21

5 s(l 1 i, n)p(L 2 1 2 i) , h(l), (1)O[ ]i50

where the , denotes convolution and h( l) is the impulse
response of the receiver filter. The summation in (1) is
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a correct representation for the composite voltage V(l,
n) given that we consider ‘‘scattering centers,’’ and each
of these implicitly admits integration. Then, as a gen-
eralization of (4.40) in Doviak and Zrnić (1993), the
correlation of range samples is

(R) 2R (l) 5 s [p (l) , p*(2l)],V s m m (2)

where the modified pulse envelope pm is given by pm(l)
5 p( l) , h( l). Hence, the correlation coefficient of range
samples is(R)rV

(R)R (l) p (l) , p*(2l)V m m(R)r (l) 5 5 . (3)V L21(R)R (0)V 2p (l9)O m
l950

In practice, can be evaluated by attenuating the(R)rV

transmitted pulse, injecting it directly into the receiver,
and oversampling the result to obtain the modified pulse
envelope pm. Introducing pm into (3) produces ; this(R)rV

needs to be done only once for a given pulse shape and
receiver bandwidth.

The procedure for implementing the whitening trans-
formation follows Koivunen and Kostinski (1999) and
is listed here for completeness (and reader convenience).
Define the Toeplitz–Hermitian normalized correlation
matrix as(R)CV

(R) (R) 1 r (1) · · · r (L 2 1)V V

(R) (R) r (1)* 1 · · · r (L 2 2)V V(R)C 5 . V _ _ 5 _ (R) (R)r (L21)* r (L 2 2)* · · · 1V V 

(4)

Because this matrix is positive semidefinite (Therrien
1992), it can be decomposed as

(R) TC 5 H*H ,V (5)

where the superscript T indicates matrix transpose and
* is the usual complex conjugation operation. Any H
that satisfies (5) is called a square root of (Faddeev(R)CV

and Faddeeva 1963) and is the inverse of a whitening
transformation matrix,

21W 5 H , (6)

which, if applied to the range samples, produces L un-
correlated random variables with identical power (Kay
1993).

In general, the decomposition of the correlation matrix
is not unique and many well-known methods can be ap-
plied to generate different whitening transformations. Two
such methods are the eigenvalue decomposition (Therrien
1992) and Cholesky decomposition, which is equivalent
to Gram–Schmidt orthogonalization (Therrien 1992; Pa-
poulis 1984). In the eigenvalue decomposition method,

is represented as 5 ULU*T, where L is a diagonal(R) (R)C CV V

matrix of eigenvalues of , and U is the unitary matrix(R)CV

whose columns are the eigenvectors of . With this(R)CV

decomposition, an expression of the same form as (5) can

be obtained as 5 H*HT 5 (U*L1/2)*(U*L1/2)T, where(R)CV

L1/2 is a diagonal matrix with the square roots of the
eigenvalues on the diagonal. With this decomposition, H
5 U*L1/2, and W is obtained as W 5 H21 5 L21/2UT,
which is the Mahalanobis transformation (Tong 1995). In
the case of Cholesky (or triangular) decomposition, the
correlation matrix is factored as 5 TT*T, where the(R)CV

matrix T is a lower triangular matrix. Here, 5 H*HT(R)CV

5 (T*)*(T*)T, and H 5 T*; hence, the whitening matrix
W 5 H21 5 (T*)21 is also lower triangular. A possible
advantage of lower triangular W matrices is that whitening
can proceed in a pipeline manner; that is, computations
can start as soon as the first sample is taken and progress
through subsequent samples. Non-lower-triangular W ma-
trices require the presence of all data before a whitened
sample can be computed.

In the following sections, we denote with X(l, n) the
sequence of whitened samples obtained from V(l, n) for
a fixed sample time nTs as

L21

X(l, n) 5 w V( j, n); l 5 0, 1, . . . , L 2 1, (7)O l, j
j50

where wl,j are the entries of the whitening matrix. Al-
ternatively, the previous equation can be written using
matrix notation as

X 5 WV ,n n (8)

where Vn 5 [V(0, n), V(1, n), . . . , V(L 2 1, n)]T and
Xn 5 [X(0, n), X(1, n), . . . , X(L 2 1, n)]T. It is important
to note that regardless of the method used to decompose

, the whitening procedure is given by (8), and even(R)CV

though the whitening matrices may be different, the
results in terms of data decorrelation are statistically
equivalent.

4. The noise enhancement effect

The presence of noise is inherent in every radar sys-
tem; therefore, it is necessary to analyze the perfor-
mance of the whitening transformation, under noisy
conditions. Let V 5 VS 1 VN, where the subscripts S
and N stand for signal and noise components, respec-
tively. When applying the whitening transformation,
both signal and noise are similarly affected:

X 5 WV 5 WV 1 WV 5 X 1 X .S N S N (9)

For simplicity, we dropped the subscript ‘‘n’’ that is
used to indicate sample time. From (9), we can see that
the signal is whitened and the noise, which was white
prior to the whitening transformation, becomes colored.

Let us apply the transformation matrix to the data (8)
and compute the range-time correlation for the ran-(R)RX

dom vector X using the expectation operation E[.] as
(R) T T TR 5 E [X*X ] 5 W*E [V*V ]W . (10)X

The correlation matrix of V (signal plus noise) is given
by SV 1 NVI, where is given in (4); I is the L-(R) (R)C CV VS S

by-L identity matrix; SV is the signal power; and NV is
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the noise power. Then, substituting the expression above
for the correlation matrix of V in (10), using (6), dis-
tributing the matrix product, and using (5),

(R) (R) T21 21R 5 (H )*[S C 1 N I](H )X VV VS

21T5 S I 1 N (H H*) . (11)V V

It is thus evident that the range-time correlation of X
is the sum of a signal ( ) and a noise ( ) component,(R) (R)R RX XS N

where 5 SVI and 5 NV(HTH*)21. By definition,(R) (R)R RX XS N

XS is white because its correlation is a diagonal matrix.
Additionally, all components have identical power SV

because is a scalar multiple of the identity matrix.(R)RXS

On the other hand, the noise becomes colored, and its
mean power after whitening can be computed by av-
eraging the powers of the individual components of XN,
which correspond to the diagonal elements of . Then,(R)RXN

1 NV(R) 21TN 5 tr[R ] 5 tr[(H H*) ], (12)XX NL L

where tr(.) is the matrix trace operation. Therefore, the
noise enhancement factor (NEF) defined as NEF 5 NX/
NV can be obtained from (12) as

(R)21 21NEF 5 L tr{[C ] },VS
(13)

where we used the cyclic property of the trace and the
matrix decomposition in (5). For an ideal system (i.e.,
a system with a rectangular transmitted pulse and radar
bandwidth much larger than the reciprocal of pulse
width) ( l) 5 1 2 | l | /L for | l | , L, and the trace(R)rV

in (13) can be computed using (A32) to obtain NEF 5
L2(L 1 1)21. Note that an extra L factor should be added
if comparing with the noise power in the classical pro-
cessing. To effectively oversample by a factor of L, an
L-times larger bandwidth than the reciprocal of the pulse
width is needed; this increases the noise power by the
same factor. Under these considerations, the effective
noise increase over the matched filter case (for an ideal
system) becomes L3(L 1 1)21.

The trade-off between noise enhancement (radar sen-
sitivity) and variance reduction makes the whitening
transformation useful in cases of relatively large SNR.
For weather surveillance radars, the SNR of signals
from storms is large and the effects of noise when using
the whitening transformation are negligible. For ex-
ample, a 3 mm h21 rain in the Weather Surveillance
Radar-1988 Doppler (WSR-88D) produces an SNR of
37 dB at 50 km. Clearly, for measuring light rain, the
noise enhancement by whitening would not be a prob-
lem to the full 230 km of required coverage. However,
the threshold for display is set at an SNR of 6 dB mainly
to observe snow, which typically has smaller reflectiv-
ity. This SNR falls in the range where noise enhance-
ment dominates and may preclude the use of whitening.

A solution to the noise enhancement problem is to
relax the whitening requirements and select a transfor-
mation such that the output noise power is also mini-
mized. A transformation that is optimized based on the

minimum mean-square error (MMSE) criterion accom-
plishes the desired goal but requires a priori knowledge
of the SNR at every range location (Ebbini et al. 1993).
Alternatively, we can look at the same problem in terms
of the eigenvalues of the range-time correlation matrix.
The ability to limit the gain of the whitening transfor-
mation to reduce the noise enhancement effect arises
from the relation between the eigenvalues of a corre-
lation matrix and the corresponding power spectral den-
sity. That is, the range spanned by the power spectral
density matches closely the range of eigenvalues (John-
son and Dudgeon 1993). Accordingly, by limiting the
span of eigenvalues, it is possible to place a bound on
the gain of the transformation (Torres 2001). The anal-
ysis of these and other suboptimal techniques is a subject
for further study.

5. Spectral moment estimators

The estimation of spectral moments using a whitening
transformation on oversampled data is performed in
three steps. First, oversampled data in range are whit-
ened as discussed in section 3. Then, the sample-time
autocorrelation at lags zero and one are estimated for
each range location, and these estimates are averaged
(in range) to reduce the standard errors. Finally, these
improved correlation estimates are used to compute
power, Doppler velocity, and Doppler spectrum width
with the usual algorithms (Doviak and Zrnić 1993).
Whitening-transformation-based (WTB) estimators for
the spectral moments and the theoretically derived equa-
tions for their variances (appendix A) are presented next.
These theoretical equations are used to compare and
validate simulation results. Further, they clearly show
the interplay of the various variables in the reduction
of variances.

a. Signal power estimator

The WTB power estimator for oversampled signals
in noise is given by

L21 M211
2ˆ ˆS 5 S 5 |X(l, m)| 2 N(NEF), (14)O OX

(WTB) LM l50 m50

where L is the oversampling factor, M is the number of
pulses, N is the noise power, NEF is the noise enhance-
ment factor in (13), and X(l, n) is the whitened over-
sampled weather signal as in (7). Using the results in
the appendix for an ideal system, the normalized stan-
dard deviation of WTB signal power estimates is ob-
tained from (A34) as

ˆSD{S}
1 1 1 2L N(WTB)

5 1 1 2[S L L 1 1 SÏM 2s Ïpvn

1/222L(3L 1 2L 2 3) N
1 , (15)

2 1 2 ]2(L 1 1) S



1438 VOLUME 20J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

where svn, the normalized spectrum width, is defined
as sy /2y a, and y a is the maximum unambiguous veloc-
ity.

b. Mean Doppler velocity estimator

The WTB mean Doppler velocity estimator for ov-
ersampled signals is given by

y a (T )ˆŷ 5 2 arg[R (1)], (16)X
(WTB) p

where y a is the maximum unambiguous velocity, and

the lag-one sample-time autocorrelation function for the
oversampled whitened signal X(l, n) is estimated as

L211
(T ) (T )ˆ ˆR (1) 5 R (1)OX XlL l50

L21 M221
5 X*(l, m)X(l, m 1 1), (17)O O

L(M 2 1) l50 m50

where X(l, n) is the whitened oversampled weather sig-
nal. From (A35) in the appendix, the standard deviation
of WTB mean Doppler velocity estimates for the ideal
case is

1/2SD{ŷ} 22 2(2ps ) (2ps ) 2vn vn1 e 2 1 1 L N e L(3L 1 2L 2 3) N(WTB)
25 1 [2 sinh(2ps ) ] 1 . (18)vn 25 1 2 1 2 6[ ] [ ]2y L L 1 1 S 2 2(L 1 1) S2pÏM 2 1 4s Ïpa vn

c. Doppler spectrum width estimator

The WTB Doppler spectrum width estimator for ov-
ersampled signals is given by

1/2ˆ ˆy Ï2 S Sa X Xŝ 5 ln sgn ln , (19)y (T ) (T )ˆ ˆ) ) 5 6[ ] [ ]p |R (1)| |R (1)|(WTB) X X

where ŜX and (1) are given in (14) and (17), re-(T)R̂X

spectively. From (A36) in the appendix, the standard
deviation of WTB Doppler spectrum width estimates
for the ideal case is

SD{ŝ } 2y (2ps )vne 1(WTB) 5
2[ ]2y 4p s ÏM 2 1a vn

2 2(2ps ) (ps )vn vne 2 4e 1 3 1
3 5[ ]L4s Ïpvn

L N
21 2[cosh(2ps ) 2 1]vn 1 2L 1 1 S

1/222(2ps ) 2vne 1 2 L(3L 1 2L 2 3) N
1 .

2 1 2 6[ ]2 2(L 1 1) S

(20)

d. Results

The performance of WTB estimators is compared
with that achieved by the classical matched-filter-based
(MFB) estimators and the estimators obtained from ov-
ersampled data and regular averaging. MFB estimators
are derived from oversampled data using coherent range
averaging, that is, the type of conventional processing
that uses a digital matched filter at the receiver’s front
end (averaging in range is performed at the I and Q

component level). Alternatively, oversampling-and-av-
erage-based (OAB) estimators operate on oversampled
data but use incoherent averaging; that is, averaging in
range is performed at the correlation level. Throughout
this work we stress the comparison of WTB estimates,
(the proposed implementation) with MFB estimates, the
current implementation in the WSR-88D. OAB esti-
mators are only included for illustrative purposes; for
more details the reader is referred to Torres (2001).

Figure 2 shows the normalized standard deviation of
WTB, MFB, and OAB power (Fig. 2a), Doppler velocity
(Fig. 2b), and spectrum width estimators (Fig. 2c) as a
function of the SNR for the ideal case and a normalized
spectrum width of 0.08. The oversampling factor L 5
8 is a realistic value that can be achieved on weather
surveillance radars. The SNR in these figures refers to
the output of the digital receiver, before the digital
matched filter for the case of MFB estimates. With this
assumption one can make a fair comparison of estimates
because the common signal path ends at the digital re-
ceiver. After the digital receiver, either whitening or a
matched filter (or both) can be applied.

When compared with MFB (or OAB) estimates, WTB
estimates exhibit a superior performance for large SNR.
Nonetheless, it is evident from these plots that the per-
formance of the WTB estimator worsens as the SNR
decreases due to the noise-enhancement effect inherent
to the whitening transformation. The performance of
OAB estimators is not optimum in terms of variance
reduction as the average is done on correlated variables.
However, since there is no noise enhancement, OAB
estimates exhibit lower errors than MFB estimates for
a broader range of SNR than the WTB estimates. The
variance reduction factor (VRF) for the three WTB es-
timators compared with the conventional matched-filter
approach can be computed as the ratio of the variance
of MFB estimates to the variance of WTB estimates.
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FIG. 2. Standard error of (a) signal power, (b) mean Doppler velocity, and (c) Doppler spectrum width estimates vs the SNR for the ideal
case. The three sets of curves in each figure correspond to WTB, MFB, and OAB estimators, respectively. Solid lines show the results from
simulations (averaging 1000 realizations), and dashed lines show the theoretical predictions.

For the ideal receiver case and a large SNR, the variance
reduction factor is equal to the oversampling factor L
[cf. (A34)–(A36) with (A39)–(A41), respectively]. Note
that theoretical predictions and simulation results, both
plotted in Fig. 2, are in remarkable agreement.

Figure 3 shows the bias of WTB, MFB, and OAB
signal power (Fig. 3a), mean Doppler velocity (Fig. 3b),
and spectrum width estimators (Fig. 3c) as a function
of the SNR under the same conditions as in Fig. 2.
Estimators of S and y are unbiased even for relatively
low SNR. On the other hand, sy estimates exhibit a
small bias even for large SNR with WTB estimates be-
ing the least biased of the three. At low SNR, WTB
estimates of the spectrum width are heavily biased due
to the noise-enhancement effect.

It is of practical significance to determine the value
of SNR for which the variance of estimates obtained
from whitened samples is equal to the variance of es-

timates in the matched-filter implementation. This is
because WTB estimators should be utilized only for
SNRs greater than or equal to the crossover signal-to-
noise ratio (SNRc). By definition, SNRc is found by
equating the VRF to 1 and is plotted in Fig. 4 versus
the normalized spectrum width for power (Fig. 4a),
Doppler velocity (Fig. 4b), and spectrum width esti-
mates (Fig. 4c). For completeness, the SNRc with re-
spect to OAB estimates is also shown. These plots were
obtained directly from the theoretical results derived in
appendix A and verified by simulation studies (see ap-
pendix B).

6. Discussion

Section 5 discussed the application of the whitening
transformation to the estimation of spectral moments.
Estimators operating on whitened signals were termed
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FIG. 3. Bias of (a) signal power, (b) mean Doppler velocity, and (c) Doppler spectrum width estimates vs the SNR for the ideal case. The
three curves in each figure correspond to WTB, MFB, and OAB estimators, respectively. The results were obtained from simulations by
averaging 1000 realizations.

WTB estimators, and they exhibit reduced standard er-
rors with respect to MFB estimators if the SNR is rel-
atively large. A performance comparison of all WTB
estimators with MFB estimators for the ideal case
showed that for all the variables the variance reduction
factor for large SNR is L, where L is the oversampling
factor. That is, approximately L-times fewer samples are
needed for WTB estimators to keep the same errors as
the ones obtained without the aid of a whitening trans-
formation.

For low SNR, the performance of all WTB estimators
deteriorates as the noise enhancement effect discussed in
section 4 becomes significant. In such cases, the estimates
on nonwhitened data result in better performance. The
rule for selecting the best estimate is given by

 û if SNR # SNRc (MFB)û 5 (21)
 û if SNR . SNR .c

(WTB)

In the previous equation, u is any of the variables dis-
cussed in this chapter, namely, S, y, or sy ; and SNRc

is the crossover SNR (different for each estimator) de-
fined as the SNR that corresponds to a variance reduc-
tion factor of 1.

Throughout this study we dealt with an ideal system
and a known range-time correlation coefficient, which
derives from an assumption of uniform reflectivity. Al-
though a rectangular pulse and infinite bandwidth re-
ceiver are not realistic, they closely approximate the
characteristics of operational systems and serve to il-
lustrate the potential of the method. For example, an
intermediate-frequency (IF) bandwidth of about 10 times
the reciprocal of the pulse width will be enough to still
consider the noise white in relation with the weather
signal bandwidth (what really counts is the value of the
correlation coefficient of noise at lag 1, which we submit
is close to zero in our application). This noise model
differs from the one in Dias and Leitão (1993), where
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FIG. 4. SNRc vs the normalized spectrum width for (a) signal power, (b) mean Doppler velocity, and (c) Doppler spectrum width estimators
in an ideal system. Solid lines represent the SNR at which the errors of WTB estimates equal the errors of MFB estimates. Dashed lines
represent the SNR at which the errors of WTB estimates equal the errors of OAB estimates. WTB estimates are accepted if SNR . SNRc;
otherwise, classical estimates are preferred.

the assumption is that the noise and signal components
are equally correlated in range and the noise is white
only in sample time. In the National Weather Service
(NWS) WSR-88D, the IF bandwidth exceeds 8 MHz
and the short pulse is t 5 1.57 ms; therefore, the band-
width is over 12 times larger than the reciprocal of t.
In addition, although the transmitted pulse is not exactly
rectangular, rise and fall times are short enough that
experimental measurements of the range correlation of
samples revealed an almost perfectly triangular corre-
lation similar to the one assumed throughout this work.

The constraint of uniform reflectivity is the principal
assumption required to precompute the exact correlation
of oversampled signals in range. However, it is under-
stood that these idealized conditions will not be satisfied
for all the resolution volumes in an operational envi-
ronment, especially at the edge of precipitation cells,
where very sharp gradients could exist. Still, the as-

sumption of uniform reflectivity has been used in prac-
tice before. For example, the WSR-88D averages four
samples in range (over 1 km) to improve the accuracy
of estimates. Thus, operational meteorologists ‘‘accept’’
averaging gradients over 1-km volume depths. Although
the range extent of the resolution volume with the pro-
posed method is smaller (about 500 m versus 1 km),
degradation in regions of nonuniform reflectivity will
occur, as shown through simulations by Torres (2001).
For example, for a reflectivity gradient of 30 dB km21

[referred to as ‘‘extreme’’ in model 1 of Rogers (1971)],
it can be shown that the variance reduction factor is
approximately cut in half. This is because the reflectivity
profile modifies the correlation of range samples, and
whitening based on uniformity assumptions is incom-
plete. However, the same simulation analyses showed
that gradients of 10 dB km21 would create negligible
performance deterioration.
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Approximate (or incomplete) whitening reduces the
correlation of samples and hence the variance of esti-
mates to a certain degree. Some decorrelation occurs
regardless of reflectivity gradients because the range–
time correlation function always has the same compact
support; that is, it is zero outside of a finite interval that
is solely dictated by the receiver impulse response and
the transmitter pulse length. Implicit in the compactness
is the assumption that the receiver bandwidth is much
larger than the reciprocal of the pulse length. For ex-
ample, for a finite-impulse-response (FIR) receiver filter
with F taps, the support of the range-time correlation
function is the symmetric interval of length 2(L 1 F)
about zero, where L is the oversampling factor. Another
way to look at this is in the frequency domain by ex-
amining the power spectral density of range samples.
The support invariability of the correlation function im-
plies that the nulls of the spectrum always correspond
to the same frequencies. Since the whitening transfor-
mation is designed to boost those regions where the
signal spectral components are weak, it follows that a
considerable degree of whitening will be achieved even
if there is a mismatch of correlation functions caused
by reflectivity gradients. Further study with simulations
as well as with real data is required to quantify this
effect.

An alternative technique that increases the equivalent
number of independent samples without the pitfalls of
noise enhancement and correlation function mismatches
is pulse compression. Then, it is natural to compare
pulse compression to oversampling and whitening. As-
sume that peak transmitter power, pulse duration, and
receiver bandwidth are the same for both techniques. In
addition, the compressed pulses are averaged in range,
and the number of averages is the same as the number
of averages of whitened pulses in range. Then, at large
SNRs, both achieve the same variance reduction of es-
timates because the oversampling factor (L) is equal to
the compression factor. The difference is that pulse com-
pression requires an L-fold increase in bandwidth for
the transmitted signal. This increased bandwidth has a
payoff at weak SNRs. If noise dominates estimation
accuracy, pulse compression has approximately an L2

edge in SNR over whitening. This is because there is
an L-fold increase in signal power and, further, the noise
is not enhanced by about a factor of L as occurs with
whitening. In fact, averaging one L-compressed pulse
is equivalent to a matched filter in terms of SNR. The
increase in bandwidth (noise power) is compensated for
by an increase in signal power, and averaging in range
L pulse-compressed samples affects signal and noise in
the same way. In summary, pulse compression outper-
forms whitening for low SNRs, but its practical imple-
mentation is only affordable in remote sensing devices
that can allocate large transmission bandwidths.

7. Conclusions
A method for estimation of Doppler spectral moments

on pulsed weather radars was presented. The scheme

exploits the idea of whitening to obtain independent
samples, such as in the works of Dias and Leitão (1993),
Schulz and Kostinski (1997), Koivunen and Kostinski
(1999), Frehlich (1999), and Fjørtoft and Lopes (2001).
It operates on oversampled echoes in range, and the
spectral moments are estimated by suitably combining
weighted averages of these oversampled signals with
usual processing of samples (spaced at pulse repetition
time) at a fixed range location. As with the previous
works, the whitening transformation is used in such a
way that the equivalent number of independent samples
equals the number of samples available for averaging
and, consequently, the variance of the estimates de-
creases significantly.

Whitening-transformation-based (WTB) estimators
of spectral moments were explored, and their perfor-
mance was compared with that of classical estimators
that use a digital matched filter. The variance reduction
achieved by WTB estimators under ideal conditions as-
ymptotically tends to L for large signal-to-noise ratios
(SNRs). For low SNRs there is a crossover point (SNRc)
for the variances of WTB and classical estimators. An-
alytical expressions that allow the computation of SNRc

for any variable and different conditions were derived.
For SNRs larger than the SNRc, WTB estimates are
preferred over classical estimates. Below the SNRc, the
noise enhancement effect dominates and classical esti-
mates are favored.

The application of this technique is possible because

• the correlation of samples in range is known exactly
if the resolution volume is uniformly filled with scat-
terers (although not optimum, estimate variance re-
duction is also possible in resolution volumes with
reflectivity gradients);

• the receiver bandwidth is large compared with the
reciprocal of the pulse length; and

• for most weather phenomena of interest, the SNR is
relatively high (above the SNRc), so the increase of
noise power is not critical and the method works well.

Realistic simulations (see appendix B) were per-
formed using known statistical properties of signals re-
flected by scatterers in fluids. The simulations also take
the known properties of the probing pulse and receiver
filter to reconstruct a composite signal from distributed
scatterers illuminated by the pulse. This work confirms
that WTB estimators are indeed viable candidates for
future enhancements of the WSR-88D radar network.

Summarizing, the use of WTB estimators of spectral
moments allows increasing the speed of volume cov-
erage by weather radar so that hazardous features can
be detected more timely. It also leads to better estimates
of precipitation and wind fields.
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APPENDIX A

Derivation of Estimator Variances

Estimators of the spectral moments Ŝ, , and y areŷ ŝ
obtained from estimates of total power P̂ and the sample-
time (T), lag-one autocorrelation function R̂(T) (1) as

ˆ ˆS 5 P 2 N, (A1)

y a (T )ˆŷ 5 2 arg[R (1)], (A2)
p

1/2ˆ ˆy Ï2 S Sa
ŝ 5 ln sgn ln , (A3)y (T ) (T )ˆ ˆ) ) 5 6[ ] [ ]p |R (1)| |R (1)|

where N is the system noise power and y a is the max-
imum unambiguous velocity.

Consider first the case of WTB estimators. Estimates
of power and lag-one autocorrelation are given by

L21 M211
P̂ 5 X*(l, m)X(l, m), (A4)O OX LM l50 m50

L21 M221
(T )R̂ (1) 5 X*(l, m)X(l, m 1 1), (A5)O OX L(M 2 1) l50 m50

where L is the oversampling factor, M is the number of
pulses, and X(l, m) is the whitened signal as in (7).

Whereas the variance of Ŝ can be obtained by direct
computation, if the distributions of (A4) and (A5) are
smooth and narrow around their mean values, the vari-
ances for and y can be computed using perturbationŷ ŝ
analysis (Zrnić 1977). The results are summarized here:

ˆ ˆVar {S} 5 Var{P }, (A6)X
(WTB)

2 (T ) (T )ˆ ˆy 1 |R (1)| R (1)a X XVar {ŷ} 5 Re Var 2 Var ,
(T ) (T )1 2 5 6[ ] [ ](WTB) p 2 |R (1)| R (1)

(A7)

Var{ŝ }y
(WTB)

2
2 (T )y |R (1)|a5

2[ ]p s Sy

(T ) (T )ˆ ˆ ˆP 1 |R (1)| R (1)X X X3 Var 1 Re Var 1 Var
(T ) (T )7 1 2 5 6[ ] [ ]S 2 |R (1)| R (1)

(T )ˆ ˆP R (1)X X2 2 Re Cov , . (A8)
(T )5 68[ ]S R (1)

To find these variances we must evaluate the following
four expressions:

L21 L21 M21 M211
2ˆE{P } 5 E [X*(l, m)X(l, m)X*(l9, m9)X(l9, m9)], (A9)O O O OX 2 2L M l50 l950 m50 m950

L21 L21 M22 M221
(T ) 2ˆE{|R (1)| } 5 E [X*(l, m)X(l, m 1 1)X*(l9, m9 1 1)X(l9, m9)], (A10)O O O OX 2 2L (M 2 1) l50 l950 m50 m950

L21 L21 M52 M221
(T ) 2ˆE{[R (1)] } 5 E [X*(l, m)X(l, m 1 1)X*(l9, m9)X(l9, m9 1 1)], (A11)O O O OX 2 2L (M 2 1) l50 l950 m50 m950

L21 L21 M21 M221
(T )ˆ ˆE{P R (1)} 5 E [X*(l, m)X(l, m)X*(l9, m9)X(l9, m9 1 1)]. (A12)O O O OX X 2L M(M 2 1) l50 l950 m50 m950

The expectation operations E[.] inside these expressions
can be simplified using the identity

E [X*X X*X ] 5 E [X*X ]E [X*X ]1 2 3 4 1 2 3 4

1 E [X*X ]E [X*X ], (A13)1 4 3 2

which is valid for zero-mean, complex, Gaussian ran-
dom variables (Reed 1962). After applying this identity
to (A9)–(A12), each expectation can be expressed as
the autocorrelation of X at particular lags; that is, E[X*(l,
m)X(k, n)] 5 Rx(k 2 l, n 2 m). For example, for (A9)
we have

1
2ˆE{P } 5 {E [X*(l, m)X(l, m)]OX 2 2L M l,l9,m,m9

3 E [X*(l9, m9)X(l9, m9)]

1 E [X*(l, m)X(l9, m9)]

3 E [X*(l9, m9)X(l, m)]}

1
25 [R (0, 0)]O X2 2L M l,l9,m,m9

1 R (l9 2 l, m9 2 m)R (l 2 l9, m 2 m9),X X

(A14)
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Quadruple summations can be simplified by letting l0
5 l9 2 l, m0 5 m9 2 m, and collecting terms so that

L21 L21 M21 M21

f (l9 2 l, m9 2 m)O O O O
l50 l950 m50 m950

L21 M21

5 (L 2 |l 0|)(M 2 |m 0|) f (l 0, m 0).O O
l 052L11 m 052M11

(A15)

Then,
L21 M211

2 2ˆE{P 2 P } 5 O OX 2 2L M l52L11 m52M11

23 (L 2 |l |)(M 2 |m|)|R (l, m)| . (A16)X

Analogously, the three remaining expressions become
(T ) 2 (T ) 2ˆE{|R (1)| 2 |R (1)| }X

L21 M221
5 O O2 2L (M 2 1) l52L11 m52M12

23 (L 2 |l |)(M 2 |m| 2 1)|R (l, m)| , (A17)X

(T ) 2 (T ) 2ˆE{[R (1)] 2 [R (1)] }X

L21 M221
5 O O2 2L (M 2 1) l52L11 m52M12

3 (L 2 |l |)(M 2 |m| 2 1)R (l, m 1 1)X

3 R*(l, m 2 1), (A18)X

(T ) (T )ˆ ˆE{P R (1) 2 PR (1)}X X

L21 M221
5 O O2L M(M 2 1) l52L11 m52M12

3 (L 2 |l |)(M 2 |m| 2 1)R (l, m 1 1)R*(l, m).X X

(A19)

Because X(l, m) has uncorrelated signal and noise
components, the autocorrelation function can be de-
composed into a sum of the signal (S) and noise (N )
autocorrelation functions, that is, RX 5 R 1 R .X XS N

Also, because we are dealing with precipitation par-
ticles and the width of the range-weighting function
[(4.22) of Doviak and Zrnić 1993] is much smaller
than the pulse repetition time, the time and space di-
mensions are approximately independent [see, e.g.,
section 5.5 of Bringi and Chandrasekar (2001)].
Therefore, two-dimensional autocorrelation functions
are separable (see, e.g., Dias and Leitão 1993) as they
can be decomposed into a product of one-dimensional
sample-time (T ) and range–time (R) autocorrelation
functions:

(R) (T ) (R) (T )R (l, m) 5 R (l)R (m) 1 R (l)R (m). (A20)X X X X XS S N N

Double summations can now be decoupled and (A16)
becomes

2 2ˆE{P 2 P }X

L211
(R) 25 (L 2 |l |)|R (l)|O XS2 2L M l52L11

M21
(T ) 23 (M 2 |m|)|R (m)|O XS

m52M11

L212
(R) (R)1 Re (L 2 |l |)R (l)[R (l)]*O X XS N2 2 5L M l52L11

M21
(T ) (T )3 (M 2 |m|)R (m)[R (m)]*O X XS N 6m52M11

L211
(R) 21 (L 2 |l |)|R (l)|O XN2 2L M l52L11

M21
(T ) 23 (M 2 |m|)|R (m)| . (A21)O XN

m52M11

Recall that the whitening transformation is applied to the
samples along the range dimension [see (8)]; the sample–
time correlation of weather signals, which carries the
information needed to estimate the spectral moments, is
preserved after whitening. Therefore, for a Gaussian sam-
ple-time correlation function and white noise (m) 5TRXS

S exp[22(psynm)2 1 j2pynm] and (m) 5 Nd(m),TRXN

where yn 5 y/2ya and svn 5 sy/2ya, are the normalized
velocity and spectrum width, respectively (Doviak and
Zrnić 1993). Summations in (A21) involving these func-
tions can be approximated as

M21
(T ) 2(M 2 |m|)|R (m)|O XS

m52M11

` 2MS22 2(2ps x)vnø S (M 2 |x|)e dx ø , (A22)E 1/22p svn2`

if Msvn k 1,

M21
(T ) (T )(M 2 |m|)R (m)[R (m)]* 5 MSN, (A23)O X XS N

m52M11

M21
(T ) 2 2(M 2 |m|)|R (m)| 5 MN . (A24)O XN

m52M11

Closed-form solutions for the summations involving
range-time correlations can be obtained if we work with
correlation matrices instead of correlation functions. To
make the conversion we can use the identity1 L21Sl52L11

(L 2 | l | )R1(l) ( l) 5 tr{C1C2}, where C1 and C2 areR*2
the correlation matrices corresponding to the correlation
functions R1 and R2, respectively, and tr{.} is the matrix

1 This can be proved by expressing the trace as the sum of diagonal
elements of the matrix product, expanding the matrix product using
the Hermitian and Toeplitz properties of complex correlation matri-
ces, and finally performing a simple substitution of summation in-
dexes.
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trace operation. The relevant terms from (A21) are con-
verted as

L21
(R) (R)2 2(L 2 |l |)|R (l)| 5 tr{[C ] }, (A25)O XX SS

l52L11

L21
(R) (R) (R) (R)(L 2 |l |)R (l)[R (l)]* 5 tr{C C }, (A26)O X XX X S NS N

l52L11

L21
(R) (R)2 2(L 2 |l |)|R (l)| 5 tr{[C ] }. (A27)O XX NN

l52L11

Correlation matrices for the signal and noise com-
ponents of the whitened sequence X can be obtained
from the correlation matrix of the range (correlated)
samples V by recalling that X 5 WV (8), where W 5
H21 and 5 H*HT . Due to the linear relationship(R)CVS

between V and X, the correlation matrix of X can be
written as 5 W* WT . Decomposing into(R) (R) (R)C C CX V V

its signal and noise components and distributing the
matrix products,

(R) (R) T TC 5 W*(SC 1 N I)W 5 S I 1 N(W*W ); (A28)X VS

therefore, 5 I and 5 W*WT. Finally, (A25)–(R) (R)C CX XS N

(A27) can be written as

(R) 2 2tr{[C ] } 5 tr{I } 5 L, (A29)XS

(R) (R) T Ttr{C C } 5 tr{W*W } 5 tr{W W*}X XS N

(R) 215 tr{[C ] }, (A30)VS

(R) (R)2 22T Ttr{[C ] } 5 tr{W*W W*W } 5 tr{[C ] }. (A31)X VN S

For the ideal range-time correlation coefficient (corre-
sponding to a rectangular transmitter pulse and an in-
finite receiver bandwidth) the elements of the received
signal correlation matrix are ( ) ij 5 1 2 | j 2 i | L21(R)CVS

(1 # i, j # L). The structure of this matrix allows of
computation of a closed-form expression for its inverse.
It can be verified by matrix multiplication that

 L(L 1 2) L L
2 0 · · · 0

2L 1 2 2 2L 1 2

L L
2 L 2 5 0

2 2

L 0 2 5 5 5 _
(R) 21 2[C ] 5 . VS

_ 5 5 5 5 0

L
0 5 5 L 2

2

L L L(L 1 2) 0 · · · 0 2
2L 1 2 2 2L 1 2 

(A32)

Then, by summing the diagonal elements of (A32),
tr{[ ]21} 5 L3(L 1 1)21. In addition, for symmetric(R)CVS

matrices tr(A2) 5 S i Sj and from (A32) we find2(A)ij

that tr{[ ]22} 5 (1/2)L3(3L2 1 2L 2 3)(L 1 1)22.(R)CVS

Introducing the results of (A22)–(A24) and (A29)–
(A31) into (A21) for the ideal case,

2S 2SN L
2 2ˆE{P 2 P } 5 1X M L 1 12MLs Ïpvn

2 2N L(3L 1 2L 2 3)
1 . (A33)

2M 2(L 1 1)

In a similar way we can derive expressions for (A17)–
(A19) to use in (A7) and (A8). Doing so we arrive at
the following simplified expressions for the variances
of WTB spectral moment estimators:

22 2S 1 1 L N L(3L 1 2L 2 3) NˆVar {S} 5 1 2 1 , (A34)
21 2 1 21 2 1 2[ ](WTB) M L L 1 1 S 2(L 1 1) S2s Ïpvn

22 22 (2ps ) (2ps ) 2vn vny e 2 1 1 L N e L(3L 1 2L 2 3) Na 2Var {ŷ} 5 1 2 sinh(2ps ) 1 ,vn2 25 1 2 1 21 2 1 2 6[ ](WTB) p (M 2 1) L L 1 1 S 2 2(L 1 1) S4s Ïpvn

(A35)

2 2 22 2(2ps ) (2ps ) (ps )vn vn vny e e 2 4e 1 3 1 L Na 2Var{ŝ } 5 1 2[cosh(2ps ) 2 1]y vn4 2 5 1 2 1 21 24p s (M 2 1) L L 1 1 S(WTB) 4s Ïpvn vn

22(2ps ) 2vne 1 2 L(3L 1 2L 2 3) N
1 . (A36)

2 1 2 6[ ]2 2(L 1 1) S

We can repeat the same procedure for the case of a
digital matched filter where the only difference from the

previous case is in the way that the total power and lag-
one autocorrelation function are estimated. In this case
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M211
2P̂ 5 |Y(m)| , (A37)OY M m50

M221
(T )R̂ (1) 5 Y*(m)Y(m 1 1), (A38)OY M 2 1 m50

where Y(m) 5 k V(l, m) is the output of theL21S l50

digital matched filter and k 5 [3(2L 2 1 1) 21 ]1/2 is a
normalization factor that preserves the power of the
input signal under ideal conditions. Following the
steps outlined in the previous case we obtain the
variances of the estimators for the matched-filter
case as

2 22S 1 3L N 3L NˆVar {S} 5 1 2 1 , (A39)
2 21 21 2 1 2 1 2[ ](MFB) M 2L 1 1 S 2L 1 1 S2s Ïpvn

2 22 22 (2ps ) (2ps )vn vny e 2 1 3L N e 3L Na 2Var{ŷ} 5 1 2 sinh(2ps ) 1 , (A40)vn2 2 21 21 2 1 2 1 2[ ](MFB) p (M 2 1) 2L 1 1 S 2 2L 1 1 S4s Ïpvn

2 2 22 2(2ps ) (2ps ) (ps )vn vn vny e e 2 4e 1 3 3L Na 2Var{ŝ } 5 1 2[cosh(2ps ) 2 1]y vn4 2 25 1 21 24p s (M 2 1) 2L 1 1 S(MFB) 4s Ïpvn vn

2 22(2ps )vne 1 2 3L N
1 . (A41)

21 2 1 2 62 2L 1 1 S

FIG. B1. Basic elements involved in the simulation of oversampled
weather signals.

APPENDIX B

Simulation of Oversampled Weather Echoes

The simulation method uses known statistical prop-
erties of signals reflected by scatterers in fluids and is
based on the well-known procedure for generating sin-
gle-polarization time series by Zrnić (1975). Further, it
takes into account the known properties of the probing
pulse and receiver filter to reconstruct a composite sig-
nal from the distributed scatterers illuminated by the
pulse; therefore, it is not difficult to modify the pro-
cedure to include reflectivity gradients and additive
noise. The constructed time series exhibits the required
autocorrelation in range and sample time. This proce-
dure is justified by the fact that at the horizontal inci-
dence common to weather surveillance radars, raindrops
can be regarded as frozen scatterers since the time sep-
aration between echoes from overlapping range inter-
vals is very small.

Signals received by a Doppler weather surveillance
radar at any given time are due to the superposition of
the waves backscattered by the hydrometeors that are
present in the radar resolution volume. The range lo-
cation rs of the resolution volume with respect to the
radar depends on the time delay between the transmitted
pulse and the sampling time ts as given by rs 5 cts/2,
where c is the speed of light.

The simulation procedure starts with oversampling in
range (along the range-time axis) so that there are L
samples during the pulse duration t. The contribution
of scatterers within the resolution volume is distributed
among L slabs, where each slab encompasses a large
number of hydrometeors but is represented by its equiv-

alent scattering center, which backscatters the complex
(I, Q) voltage s( l). This is reasonable because there are
numerous scatterers in the resolution volume so that
their contribution causes the voltage backscattered by
each slab to be a Gaussian complex random variable.
Note that implicit is the assumption that the slabs are
large compared with the radar wavelength and there are
many uniformly distributed scatterers in each slab. Thus,
each element of the sequence s( l) is an independent,
identically distributed (IID) complex Gaussian random
variable (RV) with zero mean and unit variance. It is
assumed that the slab centers are separated in range by
ct/2L and that the weather signal is sampled at a rate
L-times faster than the reciprocal of the pulse width,
that is, to 5 t/L s apart. Figure B1 shows a simplified
scheme of the basic elements involved in the simulation
procedure.
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For an ideal (infinite bandwidth) receiver, the impulse
response h(n) is given by the unit-sample sequence, that
is, h(n) 5 d(n). If range time is indexed with l, a range
sample of the weather signal is given by

L21

V (l) 5 s(l 1 i)p(L 2 1 2 i), 0 # l , L, (B1)O1
i50

where s is a 2L 2 1 vector of IID Gaussian random
variables with zero mean and unit variance, and p is the
transmitted pulse envelope. The autocorrelation of the
signal in (B1) is

L21
(R)R (m) 5 p( j)p( j 2 m), (B2)OV1

j50

which agrees with (4.39) of Doviak and Zrnić (1993).
A nonideal receiver channel can be modeled by assum-
ing that the receiver is a linear, shift-invariant system
with impulse response h(n) ± d(n). Then, the convo-
lution operation , can be used to obtain

V (l) 5 V (l) , h(l)2 1

L21

5 s(l 1 i)p(L 2 1 2 i) , h(l). (B3)O[ ]i50

The power of this signal is now affected by the re-
ceiver’s filter. The mean signal power after adding
correlation in range is G 5 | (h , p)( l ) | 2 ,F1L22S l50

where F is the receiver’s filter impulse response
length. In addition, the length of the input data se-
quence V1 in (B3) should be adjusted to L 1 F 2 1
samples so that enough convolution samples are com-
puted in order to bypass transients and obtain a se-
quence V 2 with L samples.

For Doppler measurements, the radar is pulsed at a
sufficiently high rate so that the atmospheric phenomena
produce correlated signal samples. Samples for every
range location are taken at intervals of Ts s, giving origin
to the ‘‘sample time.’’ It is generally assumed that the
sample-time correlation of weather signals is Gaussian
(Doviak and Zrnić 1993) and given by

(T )R (m) 5 E [V*(l, n)V(l, n 1 m)]V

2 2j4py mT /ls5 S exp[28(ps mT /l) ]e , (B4)y s

where the superscript (T ) denotes sample time, l is
the radar wavelength, S is the weather signal mean
power, the mean Doppler velocity of scatterers, andy
sy the associated spectrum width. Observe that V in
(B4) is a two-dimensional quantity where the first
index corresponds to range time and the second one
to sample time.

To incorporate the required correlation in sample time
(B4), proceed as follows. Repeat the simulation in (B3)
for M sample-time data points using independent real-
izations of s for each iteration. This generates a (L 1
F 2 1)-by-M matrix V3 given by

L21

V (l, n) 5 s(l 1 i, n)p(L 2 1 2 i) , h(l),O3 [ ]i50

for 0 # l , L 1 F 2 1 and

0 # n , M, (B5)

where s is a (2L 1 F 2 2)-by-M matrix of IID, zero-
mean, unit-variance, Gaussian random variables. Tran-
sient removal can be accomplished by constructing a
truncated version of V3 as V4(l, n) 5 V3(l 1 F 2 1, n),
for 0 # l , L and 0 # n , M. It follows that for a
given time (fixed n) the samples V4(l, n) for 0 # l ,
L have a correlation given by (B2), and for a given
range (fixed l) they are IID complex Gaussian RV with
zero mean and variance G (see previous section). There-
fore, the usual coloring procedure can be applied along
sample time. Start by expressing the power spectrum
(on a discrete Doppler velocity axis) of (B4) as

2S (y 2 y )k§(y ) 5 exp 2 ,k 2[ ]2sÏ2ps G yy

2ky ay 5 2y 1 ,k a M

k 5 2M, 2M 1 1, . . . , 2M 2 1, (B6)

where y a is the maximum unambiguous velocity. The
next step is to alias this spectrum into the Nyquist in-
terval (M samples) and then flip it to change the Doppler
velocity axis to the frequency axis (y 5 2l f d/2). This
‘‘flipped’’ sequence is referred to as §9(k), where 0 #
k , M. Summarizing, the time series with sample–time
correlation is obtained (for a fixed l) using discrete-time
Fourier transforms (F ) as

21V(l, n) 5 F {F [V (l, n)]Ï§9(k)},4

0 # l # L 2 1; (B7)

where V4 is the truncated version of the time series with
only range-time correlation, and V exhibits the required
correlation in both range and sample time. Finally, note
that because (B6) is normalized, the mean power of V
is S, as required.
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