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ABSTRACT

A method to reduce errors in estimates of polarimetric variables beyond those achievable with standard
estimators is suggested. It consists of oversampling echo signals in range, applying linear transformations to
decorrelate these samples, processing in time the sequences at fixed range locations to obtain various second-
order moments, averaging in range these moments, and, finally, combining them into polarimetric variables. The
polarimetric variables considered are differential reflectivity, differential phase, and the copolar correlation
coefficient between the horizontally and vertically polarized echoes. Simulations and analytical formulas confirm
a reduction in variance proportional to the number of samples within the pulse compared to standard processing
of signals behind a matched filter. This reduction is possible, however, if the signal-to-noise ratios (SNRs) are
larger than a critical value. Plots of the critical SNRs for various estimates as functions of Doppler spectrum
width and other parameters are provided.

1. Introduction

Evidence accumulated by researchers indicates that
the operational application of radar polarimetry is a dis-
tinct possibility, and plans exist to incorporate this ca-
pability into the U.S. national radar network. One re-
maining practical issue concerns the rather stringent re-
quirements on the errors in polarimetric variables. This
needs to be addressed if the full potential of this tech-
nology is to be realized. Although the initial imple-
mentation of processing schemes is far from being de-
cided, it is clear that with the current volume-update
rates and signal-processing algorithms, the polarimetric
variables will have errors larger than those expected by
some researchers. It is submitted that, even with larger
errors, addition of polarimetry will benefit the opera-
tional community, because the errors of the other spec-
tral moments will remain the same and the new polar-
imetric variables will add additional information useful
for precipitation measurements, identification of precip-
itation type, and data quality control. Hence, it seems
that one cannot but gain with the addition of polarim-
etry.

The purpose of this paper is to suggest a processing
scheme that can improve the estimates of polarimetric
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variables to meet the stringent error requirements so that
their usefulness is brought in line with that of the other
spectral moments. Weather radar signal processing has
matured over the years so that significant breakthroughs
are less likely, although improvements can still be made.
Some improvements are becoming practical because to-
day’s faster processors allow the real-time implemen-
tation of complex algorithms. Thus, the proposed
scheme is pertinent.

Estimates of spectral moments in weather radars are
made from a number of returned signals, usually tens.
Because these signals are correlated, radars dwell long
enough to obtain a sufficient (equivalent) number of
independent samples. As is well known from statistics,
the larger the number of independent samples, the lower
the error of the estimate derived from those samples.
Therefore, when error requirements are stringent, the
ability to obtain a large number of independent samples
becomes critical. Indeed, the main reason for averaging
reflectivity in range on the Weather Surveillance Radar-
1988 Doppler (WSR-88D) (over a 1-km interval, or four
samples) is to increase the equivalent number of inde-
pendent samples. Analogously, the current implemen-
tation of polarimetric variable estimators1 on research

1 The analysis in this paper is for simultaneous transmission and
reception of horizontally and vertically polarized signals (e.g., Doviak
et al. 2000; Scott et al. 2001). Nonetheless, the same principle is
applicable to alternate (switched) transmissions and receptions.
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radars uses a simple method of averaging samples in
range at the expense of degradation in range resolution.
Because simple averaging does not yield the best per-
formance if the observations are correlated, it is often
the practice to slow down the antenna so that there are
more samples in the dwell time and the desired statistical
error of estimates is attained. However, this is not a
desirable solution because an increase in update times
reduces the ability to detect and study fast-evolving me-
teorological phenomena.

To maintain the current update times, Schulz and Kos-
tinski (1997) first suggested that knowledge of the cor-
relation structure of weather signals could be used to
formulate polarimetric variable estimators that attain the
Cramer–Rao lower bound (i.e., the best theoretical per-
formance) based on a whitening transformation at high
signal-to-noise ratios (SNRs). A principal obstacle to
the application of the whitening transformation on the
time series is the need to known (or estimate) the cor-
relation coefficient of the signal and its Gaussian nature.
Schulz and Kostinski suggest ways to overcome these
difficulties and call for an experimental study to verify
the technique (Koivunen and Kostinski 1999, 2000).
Although the concept of whitening is mature, it was not
applied to radar remote sensing until the last decade. In
a rather short but important study, Dias and Leitão
(1993) derived an iterative technique to obtain maxi-
mum likelihood (ML) estimates of spectral moments.
They consider both the time and space variables and
assume a known correlation in range. Implicit in their
solution is whitening of the signals in range, and thus
it is likely the earliest application of whitening in the
context of signal processing for weather radars. Alter-
natively, pulse compression can be applied to increase
the equivalent number of independent samples by av-
eraging high-resolution estimates in range (Mudukutore
et al. 1998). However, most ground-based weather sur-
veillance radar do not use pulse compression because
of the required larger transmission bandwidths.

Torres and Zrnić (2003) suggested application of the
whitening transformation to oversampled data along
range time for estimating Doppler spectral moments.
This paper is a follow-up on that suggestion; it applies
the whitening transformation to the estimation of po-
larimetric variables. Throughout this study we deal with
an ideal system and a known range-time correlation co-
efficient, which derives from assumptions of frozen scat-
terers and uniform reflectivity in the resolution volume
(these assumptions are justified in section 2). For a dis-
cussion on the effects of reflectivity gradients the reader
is referred to Torres (2001) and Torres and Zrnić (2003).
Although a rectangular pulse and infinite bandwidth re-
ceiver are not realistic, they closely approximate the
characteristics of operational systems and serve to il-
lustrate the potential of the method. For example, an
intermediate frequency (IF) bandwidth of about 10 times
the reciprocal of the pulse width will be enough to allow
for oversampling and still have the noise remain white

compared to the weather signal bandwidth. In what fol-
lows, we review the whitening transformation on ov-
ersampled range data from which polarimetric variables
estimators are derived. Then, we discuss the results ob-
tained from theory and simulations. Derivations of the
variance of estimates and details of the simulation pro-
cedures are in the appendixes.

2. Oversampling in range and the whitening
transformation

Oversampling in range entails acquiring polarimetric
time series data at increased rates so that there are L
complex samples at horizontal (VH) and vertical (VV)
polarization during the pulse duration t. This is referred
to as oversampling by a factor of L. Samples obtained
in this way are correlated along range time, and their
correlation is needed to determine a whitening (or de-
correlation) transformation.

Generally, the autocorrelation of the signal V(r, t) is
a function of the transmitted pulse shape, the receiver’s
impulse response, the distribution of scatterers in the
resolution volume, and their relative motion, that is, the
random velocity field y(r, y), where y is the transverse
to the beam distance. However, in applications pertinent
to weather surveillance radars, the contribution of short-
term temporal correlation due to the random velocity
field can be neglected. This is justified as follows. The
contribution of scatterers to the oversampled signals in
range occurs in an extremely short time (of the order
of 1 ms) during which the short pulse (;1.6 ms for the
WSR-88D) traverses its length. During this short time
the cause of decorrelation is primarily the progressive
excitation of new scatterers in range as some scatterers
are left behind; there is an imperceptible contribution
from scatterer motion as the following example illus-
trates. Take a 1-ms pulse (typical for weather radar) and
a very large velocity distribution of scatterers (either
random or deterministic motion); let this distribution
extend to 100 m s21. It can be seen that the largest
relative displacement between a stationary and the fast-
est scatterer during 1 ms is 0.1 mm. This is 250 times
shorter than a quarter of the wavelength for a 10-cm
radar like the WSR-88D. Clearly, relative motion of
scatterers in that period has negligible effect on the sig-
nal, and the main decorrelating mechanism comes from
the pulse propagation through a random distribution of
scatterers. In summary, the velocity field can be ignored
when computing the range-time correlation of oversam-
pled data (frozen scatterers).

The assumption of uniform reflectivity (uniform dis-
tribution of scatterers), which was mentioned in the in-
troduction, is needed to ensure that the correlation func-
tion of oversampled signals along range time can be
computed a priori. That is, assuming that the range of
depth ct (where c is the velocity of light) is uniformly
filled with (frozen) scatterers, which is a common oc-
currence for relatively short pulses, the correlation co-
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efficient of these range samples is determined by(R)rV

the pulse shape and the receiver filter impulse response
as (Torres 2001)

(R)R (l) p (l) , p*(2l)V m m(R)r (l) 5 5 , (1)V L21(R)R (0)V 2p (l9)O m
l950

where the superscript (R) indicates range-time correla-
tions, and the symbols , and * stand for convolution
and complex conjugation, respectively. In addition,
pm(l) 5 p( l) , h( l), where p( l) is the transmitted pulse
shape, and h( l) is the impulse response of the receiver
filter. Equation (1) is valid for either polarization and
therefore uses subscript V to indicate a generic radar
return signal (VH or VV) of arbitrary polarization. In fact,
under the assumptions stated above, the range-time cor-
relation depends solely on parameters that are known
or can be precisely measured. That is a distinct advan-
tage of the proposed whitening scheme.

The whitening transformation is obtained from the
known range-time correlation coefficient by decom-(R)r V

posing the associated Hermitian Toeplitz correlation co-
efficient matrix as(R)CV

(R) TC 5 H*H ,V (2)

where the superscript T indicates matrix transpose. Any
H that satisfies (2) is called a square root of and is(R)CV

the inverse of a whitening transformation matrix W,
which if applied to the range samples V(0, n), V(1, n),
. . . , V(L 2 1, n) (sample time n is fixed) produces L
uncorrelated random variables. The uncorrelated (whit-
ened) sequence, denoted by X(l, n), is the sequence of
range samples spaced by the pulse repetition time ob-
tained as

L21

X(l, n) 5 w V( j, n) for l 5 0, 1, . . . , L 2 1,O l, j
j50

(3)

where wl,j are the entries of W 5 H21. Equation (3)
applies to both the horizontal and vertical channels, pro-
ducing XH and XV from VH and VV, respectively.

Throughout this paper a whitening transformation
that is derived only from the weather signal correlation
properties is considered; the additive noise is not in-
cluded in its derivation. Still, the whitening transfor-
mation affects both signal and noise evenly. While the
signal is perfectly whitened, the noise, which was white
to begin with, becomes colored and is amplified. It can
be shown (Torres and Zrnić 2003) that for a correlation
matrix corresponding to an ideal transmitter/receiver
system (i.e., a system with a rectangular transmitted
pulse and radar bandwidth much larger than the recip-
rocal of pulse width) the so-called noise-enhancement
factor (NEF) is

2N LwNEF 5 5 , (4)
N L 1 1

where N is the receiver noise power and Nw is the noise
power after the whitening transformation. Note that an
extra L factor should be added if comparing the noise
power with the classical processing. To effectively ov-
ersample by a factor of L, an L-times-larger bandwidth
than the reciprocal of the pulse width is needed; this
increases the noise power by the same factor. Under
these considerations, the effective noise increase over
the matched filter case (for an ideal system) becomes
L3(L 1 1)21.

The trade-off between noise enhancement (radar sen-
sitivity) and variance reduction makes the whitening
transformation useful in cases of relatively large SNR.
For weather surveillance radars, the SNR of signals
from storms is large and the effects of noise when using
the whitening transformation are negligible. For ex-
ample, a 3 mm h21 rain in the WSR-88D produces an
SNR of 37 dB at 50 km. Clearly, for measuring light
rain, the noise enhancement by whitening would not be
a problem to the full of 230 km of required coverage.
The threshold for display is set at a relatively small SNR
(,3.5 dB) mainly to observe snow, which has typically
smaller reflectivity. This SNR falls in the range where
noise enhancement dominates and may preclude the use
of whitening.

An alternative to the whitening transformation that
reduces the noise enhancement problem is based on the
minimum mean-square error (mmse) criterion. Such
transformation has the desired properties but needs a
priori knowledge of the SNR at every range location
(Ebbini et al. 1993). Alternatively, the same problem
can be studied in terms of the eigenvalues of the range-
time correlation matrix. The ability to limit the gain of
the whitening transformation to reduce the noise en-
hancement effect arises from the relation between the
eigenvalues of a correlation matrix and the correspond-
ing power spectral density. That is, the range spanned
by the power spectral density matches closely the range
of eigenvalues (Johnson and Dudgeon 1993). Accord-
ingly, by limiting the span of eigenvalues, it is possible
to place a bound on the gain of the transformation (Tor-
res 2001). The analysis of these and other suboptimal
techniques is a subject for further study.

3. Polarimetric variable estimators

a. Differential reflectivity estimator

The differential reflectivity ZDR is the ratio of reflected
horizontal and vertical power returns. The capability of
dual-polarized radars to estimate rainfall rate with better
accuracy via differential reflectivity measurement has
been well established (Aydin et al. 1990). In addition,
ZDR makes identification of hail possible (Zrnić and
Ryzhkov 1999). However, one of the problems with ZDR

measurement has been its relatively long acquisition
time because accurate rainfall-rate estimation requires
ZDR fractional errors less than 0.2 dB; hence, with the
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current implementation more samples, and thus a slower
antenna rotation rate, are necessary.

The whitening-transformation-based (WTB) differ-
ential reflectivity (in linear scale) estimator for over-
sampled signals in noise is given by

ˆ ˆ ˆZ 5 S /S , (5)DR X XH V
(WTB)

where the signal powers in the horizontal and vertical
channels are estimated as

L21 M211
2Ŝ 5 |X (l, m)| 2 N(NEF), (6)O OX HH LM l50 m50

L21 M211
2Ŝ 5 |X (l, m)| 2 N(NEF). (7)O OX VV LM l50 m50

In the previous equations L is the oversampling factor,
M is the number of pulses, N is the receiver noise power
(the same for both the horizontal and vertical channels),
NEF is the noise-enhancement factor as defined in the
previous section, and XH(l, n) and XV(l, n) are the whit-
ened oversampled weather signals for the horizontal and
vertical channels, respectively.

Using the results in appendix A for an ideal system,
the normalized standard deviation of differential reflec-
tivity estimates is obtained from (A41) as

ˆSD{Z }DR
(WTB)

ZDR

21 1 2 r 1 L NHV5 1 2(1 1 Z )DR1 2 1 2[ L L 1 1 SÏM s Ïp Hyn

1/222L(3L 1 2L 2 3) N
21 (1 1 Z ) , (8)DR 2 1 2 ]2(L 1 1) SH

where syn, the normalized spectrum width, is defined
as sy /2y a; sy is the spectrum width; y a is the maximum
unambiguous velocity; and rHV is the magnitude of the
zero-lag, cross-correlation coefficient between horizon-
tally and vertically polarized returns.

b. Differential phase estimator

The difference between the phases of horizontally and
vertically polarized returns defines this parameter. Back-
scattering, propagation, and system effects are included
in the differential phase fDP. Specific differential phase
KDP defined as the range derivative of fDP is the pertinent
polarimetric variable for measuring rainfall (Sachidan-
anda and Zrnić 1986). Although KDP has some distinct
advantages over other polarimetric variables (Zrnić and
Ryzhkov 1996), its full utility and the best way to in-
corporate it into rainfall estimators is still an active area
of research. It is known, however, that the standard error
of KDP is almost independent of rain rate, and this ad-
versely affects the measurement of light rainfall. The
standard error in KDP is linearly related to the standard

error in fDP; hence, reduction of the SD (fDP) can sig-
nificantly improve measurement of rainfall. It is desir-
able to keep this error below 18. Differential phase ob-
tained with the necessary accuracy may also prove to
be very useful in hydrometeor type identification (Zrnić
and Ryzhkov 1999).

The WTB differential phase estimator for oversam-
pled signals is given by

(T )ˆf̂ 5 arg{R (0)}, (9)DP X XH V
(WTB)

where the lag-zero sample-time cross-correlation func-
tion between the oversampled whitened signals XH(l, n)
and XV(l, n) is estimated as

L21 M211
(T )R̂ (0) 5 X*(l, m)X (l, m), (10)O OX X V HH V LM l50 m50

and where XH(l, n) and XV(l, n) are the whitened ov-
ersampled weather signals obtained from (3). Super-
script (T) stands for sample-time correlation. From Eq.
(A42) in appendix A, the standard deviation (in degrees)
of differential phase estimates for the ideal case is

SD{f̂ }DP
(WTB)

2290 r 2 1 1 1 1 Z L NHV DR5 1
21 2 1 2 1 2[ L r L 1 1 SpÏ2M 2s Ïp HV Hyn

1/222Z L(3L 1 2L 2 3) NDR1 . (11)
2 21 2 1 2 ]r 2(L 1 1) SHV H

c. Magnitude of zero-lag cross-correlation coefficient
estimator

The magnitude of the cross-correlation between the
reflected horizontal and vertical voltage returns at lag-
zero rHV is a good indicator of regions where there is
a mixture of precipitation types, such as rain and snow.
The magnitude of the zero-lag cross-correlation coef-
ficient, loosely referred to in the literature as simply the
‘‘cross-correlation coefficient,’’ depends on the shape,
oscillation, wobbling, and canting angle distribution of
hydrometeors (Sachidananda and Zrnić 1985). This po-
larimetric variable has been recently investigated for
application to hail sizing, improving polarization esti-
mates of rainfall, and detection of melting level in both
convective and stratiform precipitation (Liu et al. 1994).
As with the other polarimetric variables, the perfor-
mance of these algorithms highly depends on the ability
to obtain low-error estimates of rHV.

The WTB cross-correlation coefficient estimator for
oversampled signals is given by

(T )ˆ|R (0)|X XH Vr̂ 5 , (12)HV ˆ ˆÏ(WTB) S SX XH V

where Ŝ , Ŝ , and (0) are given in Eqs. (6), (7),TR̃X X X XH V H V

and (10), respectively. From (A43), the standard devi-
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ation of cross-correlation coefficient estimates for the
ideal case is

SD{r̂ }HV
(WTB)

2 41 1 2 2r 1 r 1HV HV5 51 2LÏM 4s Ïpyn

2(1 2 r )(1 1 Z ) L NHV DR1 1 2[ ]2 L 1 1 SH

1/222Z L(3L 1 2L 2 3) NDR1 . (13)
2 21 2 1 2 6r 2(L 1 1) SHV H

d. Results

The performance of WTB polarimetric estimators is
assessed with respect to the classical matched-filter-
based (MFB) estimators and the estimators obtained
from oversampled data and regular averaging. MFB es-
timators are obtained from oversampled data using co-
herent range averaging, that is, the type of conventional
processing that uses a digital matched filter at the re-
ceiver’s front end (averaging in range is performed at
the I and Q component level). Alternatively, oversam-
pling-and-average-based (OAB) estimators operate on
oversampled data but using incoherent averaging; that
is, averaging in range is performed at the correlation
level. Throughout this work we stress the comparison
of WTB estimates, the proposed implementation, with
MFB estimates, the current implementation in the WSR-
88D. OAB estimators achieve a modest improvement
but are computationally simpler and not susceptible to
reflectivity gradients or noise-enhancement effects.
Thus, their performance is included to supplement our
analysis, and the reader is referred to Torres (2001) for
more details.

Figure 1 shows the normalized standard errors of
WTB, MFB, and OAB (a) differential reflectivity, (b)
differential phase, and (c) cross-correlation coefficient
estimators as a function of the SNR for the ideal case,
a normalized spectrum width of 0.08, and true ZDR of
1 dB and rHV of 0.98, which are representative of pure
rain (Straka et al. 2000). The oversampling factor L 5
8 is a realistic value that can be achieved on weather
surveillance radar (Ivic et al. 2003). When compared
to MFB (or OAB) estimates, WTB estimates exhibit a
superior performance for large SNR. However, it is
evident from these plots that the performance of the
WTB estimator worsens as the SNR decreases due to
the noise-enhancement effect inherent to the whitening
transformation. The performance of OAB estimators is
not optimum in terms of variance reduction because
the average is done on correlated variables. However,
since there is no noise enhancement, these estimates
exhibit lower errors than MFB estimates for a broader

range of SNR. The variance reduction factor (VRF)
for the three WTB estimators in relation to the con-
ventional matched filter approach can be computed as
the ratio of the variance of MFB estimates to the var-
iance of WTB estimates. For the ideal receiver case
and a large SNR, the VRF is equal to the oversampling
factor L [cf. (A41)–(A43) with (A47)–(A49), respec-
tively]. Note that these results are obtained under the
assumption of uniform reflectivity and frozen scatter-
ers, and that theoretical predictions are in good agree-
ment with simulation results.

The choice of parameters in Fig. 1 corresponds to
values typical for weather surveillance radars that op-
erate at the 10-cm wavelength. For example, a pulse
repetition time of 1 ms produces a y a of 25 m s21 .
With this y a the sy (from Fig. 1) becomes 4 m s21 ,
which is the value used to specify errors in spectral
moments on the WSR-88D. The results in Fig. 1 can
be used to obtain actual errors under particular con-
ditions. For example, consider a number of samples M
5 32, which produces a dwell time of 32 ms, which
is about as short as it can be on the WSR-88D; hence,
the computations are for the worst case. Also, take an
SNR of 30 dB, which corresponds to the point where
the curves begin to flatten, that is, the point at which
WTB estimators approach the theoretical noise-free
performance. Under the previous condition and assum-
ing a ZDR of 1 dB, the standard error of ZDR estimates
is 0.044 for WTB estimates and 0.123 for the MTB
counterparts. Similarly, the actual errors of fDP esti-
mates are 1.0358 and 2.858 for WTB and MTB esti-
mates, respectively. The errors of rHV estimates are 3.6
3 1023 for WTB and 10.2 3 1023 for MTB. Note that
in three cases, the ratio of MTB to WTB errors ap-
proximates L1/2 5 2.828, as expected.

Figure 2 shows the bias of WTB, MFB, and OAB (a)
differential reflectivity, (b) differential phase, and (c)
cross-correlation coefficient estimators as a function of
the signal-to-noise ratio under the same conditions as
in Fig. 1. Although all estimators are unbiased for large
SNR, WTB ZDR and rHV estimators exhibit a bias at low
SNR due to the noise-enhancement effect. Note that fDP,
being a phase estimator, is more immune to the effects
of noise.

It is of practical significance to determine the value
of SNR for which the variance of estimates obtained
from whitened samples is equal to the variance of
estimates in the matched-filter implementation. This
is because WTB estimators should be utilized only
for SNRs greater than or equal to the crossover point
SNR c . By definition, SNR c is found by equating the
VRF to one. SNR c is plotted in Fig. 3 versus the
normalized spectrum width for (a) differential reflec-
tivity, (b) differential phase, and (c) cross-correlation
coefficient estimates. For completeness, the SNR c

with respect to OAB estimates is also shown. These
plots for different values of ZDR were obtained directly
from the theoretical results derived in appendix A and
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FIG. 1. Standard error of (a) differential reflectivity, (b) differential
phase, and (c) cross-correlation coefficient estimates vs the SNR for
the ideal case. The three sets of curves in each figure correspond to
WTB, MFB, and OAB estimators, respectively. Solid lines show the
results from simulations (averaging 1000 realizations) and dashed
lines the theoretical predictions.

verified through simulation studies (see appendix B).
Differential reflectivity values between 1 and 4 dB
are representative of pure rain (Straka et al. 2000).

4. Discussion

In section 3 the application of the whitening trans-
formation to the estimation of polarimetric variables is
discussed. Estimators operating on whitened signals
were termed WTB estimators, and they exhibit reduced
standard errors with respect to MFB (or OAB) coun-
terparts if the SNR is relatively large.

A performance comparison of all WTB with MFB
polarimetric estimators for the ideal case showed that
for all the variables the VRF for large SNR is L21, where
L is the oversampling factor. That is, approximately L
times fewer samples are needed for WTB estimators to
keep the same errors as the ones obtained without the

aid of the whitening transformation. Conversely, for low
SNR the performance of all WTB estimators deterio-
rates as the noise-enhancing effect discussed in section
2 becomes important. In such cases, the estimates on
match-filtered data result in better performance; the rule
for selecting the best estimate is given by

 û if SNR # SNRc (MFB)û 5 (14)
û if SNR . SNR . c

(WTB)

In the previous equation, u is any of the variables
discussed in this paper, namely ZDR , fDP , and rHV , and
SNR c is the crossover SNR (different for each esti-
mator) defined as the SNR that conduces to a variance
reduction factor of one. Theoretical expressions for
the variance of estimates as derived in appendix A
become useful if one needs to identify the value of
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FIG. 2. Bias of (a) differential reflectivity, (b) differential phase,
and (c) cross-correlation coefficient estimates vs the SNR for the
ideal case. The three curves in each figure correspond to WTB, MFB,
and OAB estimators, respectively. The results were obtained from
simulations by averaging 1000 realizations.

SNR c for a given variable under specific conditions
without the need for simulations (see Fig. 3). Under
appropriate limiting conditions, the theoretical vari-
ances agree with the ones available in the literature
[Eq. (7) of Sachidananda and Zrnić (1985) for ZDR

and Eq. (A18) of Ryzhkov and Zrnić (1998) for fDP ].
Finally, it is interesting to observe that the SNR c for
the differential reflectivity and differential phase are
very similar (Figs. 3a and 3b), while the one for the
cross-correlation coefficient (Fig. 3c) is larger, mak-
ing HV a more sensitive estimator in terms of ther̂
whitening transformation.

The variance reduction obtained with WTB estima-
tors is of considerable importance for the polarimetric
variables. Unlike errors in the spectral moments, errors
in polarimetric variables at the current antenna rotation
rates do not always meet the required accuracy. Con-
sequently, the use of WTB estimators for the polari-

metric variables can reduce errors to acceptable levels
without sacrificing the current update times (i.e., without
slowing down the antenna rotational speed).

5. Conclusions

A method for the estimation of polarimetric vari-
ables on pulsed weather radars was presented. The
scheme operates on oversampled echoes in range; that
is, samples of in-phase and quadrature-phase com-
ponents are taken at a rate L times larger than the
reciprocal of the transmitted pulse length. Each set of
L correlated samples is next transformed into a set of
L decorrelated samples using a whitening transfor-
mation. Powers and correlations are estimated in the
usual way along sample time, resulting in L values
for each of these estimated quantities. The L values
for each estimate are subsequently averaged, and the
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FIG. 3. Crossover signal-to-noise ratio (SNRc) vs the normalized
spectrum width for (a) differential reflectivity, (b) differential phase,
and (c) cross-correlation coefficient estimators in an ideal system.
Solid lines represent the SNR at which the errors of WTB estimates
equal the errors of MFB estimates. Dashed lines represent the SNR
at which the errors of WTB estimates equal the errors of OAB es-
timates. WTB estimates are accepted if SNR . SNRc; otherwise,
traditional estimates are preferred.

classical algorithms can then be used to compute the
polarimetric variables. Because powers and correla-
tions are derived from a set of decorrelated samples,
the variance of polarimetric variable estimates de-
creases significantly.

Whitening-transformation-based (WTB) estimators
of polarimetric variables were introduced, and their
performance was compared to that of classical esti-
mators that use a digital matched filter. The variance
reduction (with respect to matched-filter-based esti-
mators) achieved by WTB estimators under ideal con-
ditions asymptotically tends to the inverse of the ov-
ersampling factor, L 21 , for signal-to-noise ratios
(SNRs) of about 20 dB or more. For low SNRs there
is a crossover point (SNRc) for the variances of WTB
and classical estimators. Analytical expressions that
allow the computation of SNRc for any variable and
different conditions were derived. For SNRs larger
than the SNRc , WTB estimates are preferred over clas-

sical estimates. Below the SNRc , the noise-enhance-
ment effect becomes more important and classical es-
timates are favored. Further, under conditions that vi-
olate the assumptions stated in section 2, WTB esti-
mators will not perform as predicted.

The application of this technique is possible for the
following reasons.

• The correlation of samples in range is known exactly
if the resolution volume is uniformly filled with scat-
terers (suboptimum estimate variance reduction is also
possible in resolution volumes with reflectivity gra-
dients).

• The receiver bandwidth is large compared to the re-
ciprocal of the pulse length.

• For most weather phenomena of interest, the SNR is
relatively high (above the SNRc), so the increase of
noise power is not critical and the method works well.

Realistic simulations (see appendix B) were per-
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formed using known statistical properties of signals
reflected by passive scatterers in fluids; known prop-
erties of the probing pulse and receiver filter are used
to reconstruct a composite signal from distributed
scatterers illuminated by the pulse. This work con-
firms that WTB polarimetric estimators are indeed
viable candidates for future application on the WSR-
88D radar network.

Summarizing, WTB estimators of polarimetric var-
iables allow the currently accepted speeds of volume
coverage by weather radar to be maintained, so that
hazardous features can be detected in a timely fashion.
This is done with minimal sacrifice in range resolution
and without broadening the transmission bandwidth of
the radar. Thus, on the future polarimetric WSR-88D
the existing spectral moment estimators may remain
the same, and the whitening transformation could be
applied for estimating the additional polarimetric var-
iables. That way, there would be no sacrifice of the
present capabilities regardless of whether the noise is
present or not. The acquisition of more accurate po-
larimetric variables without compromising any of the
critical operation requirements would add value by
leading to better products with acceptable statistical
errors. Ultimately, these would improve rainfall esti-
mates, identification of precipitation types, and data
quality control.

Acknowledgments. The authors would like to thank
Chris Curtis for constructive discussions concerning the
derivations in appendix A. The Federal Aviation Ad-
ministration provided support for part of this work
through Interagency Agreement DTFA03-01-X-90007.
Funding for this research was provided under NOAA-
OU Cooperative Agreement NA17RJ1227.

APPENDIX A

Derivation of Estimators’ Variances

Estimators of the polarimetric variables ẐDR, DP, andf̂
HV are obtained from estimates of total powers for ther̂

horizontal and vertical channels P̂H and P̂V and the sam-
ple-time (T) lag-zero cross-correlation function (0) asTR̂HV

P̂ 2 NHẐ 5 , (A1)DR P̂ 2 NV

(T )ˆf̂ 5 arg{R (0)}, (A2)DP HV

(T )ˆ|R (0)|HVr̂ 5 , (A3)HV ˆ ˆÏ(P 2 N )(P 2 N )H V

where N is the receiver noise power in either channel.
Consider first the case of WTB estimators. Estimates

of power and lag-zero cross-correlation are given by
L21 M211

P̂ 5 X*(l, m)X (l, m), (A4)O OX H HH LM l50 m50

L21 M211
P̂ 5 X*(l, m)X (l, m), (A5)O OX V VV LM l50 m50

L21 M211
(T )R̂ (0) 5 X*(l, m)X (l, m), (A6)O OX X V HH V LM l50 m50

where L is the oversampling factor, M is the number of
pulses, and XH(l, m) and XV(l, m) are the whitened sig-
nals, as in (3). If the distributions of (A4), (A5), and
(A6) are smooth and narrow around their mean values,
the variances for ẐDR, DP, and HV can be computedf̂ r̂
using perturbation analysis (Sachidananda and Zrnić
1985; Ryzhkov and Zrnić 1998; Liu et al. 1994). The
results are summarized here:

ˆ ˆ ˆ ˆP P P PX X X XH V H V2ˆVar{Z } 5 Z Var 1 Var 1 2 Cov , , (A7)DR DR 1 2 1 2 1 2[ ]S S S S(WTB) H V H V

22(T ) (T )ˆ ˆR (0) R (0)1 X X X XH V H VVar{f̂ } 5 Re E 2 E , (A8)DP (T ) (T )) )5 1 2 6[ ] [ ]2 R (0) R (0)(WTB) HV HV

2 2(T ) (T )ˆ ˆR (0) R (0)1 X X X XH V H V2Var{r̂ } 5 r Re E 2 1 1 E 2 1HV HV (T ) (T )) )7 5 1 2 6[ ] [ ]2 R (0) R (0)(WTB) HV HV

(T ) (T )ˆ ˆ ˆ ˆ ˆ ˆP R (0) P R (0) P P1 1X X X X X X X XH H V V H V H V2 Re Cov , 1 Cov , 1 Var 1 Var
(T ) (T )5 6 1 2 1 2[ ] [ ]S R (0) S R (0) 4 S 4 SH HV V HV H V

ˆ ˆP P1 X XH V1 Cov , , (A9)1 282 S SH V

where SH and SV are the true horizontal and vertical channel signal powers, and is the true cross-correlation(T)RHV

function between horizontal and vertical signals. To find these variances the following seven expressions must
be evaluated:

L21 L21 M21 M211
2ˆE{P } 5 E [X*(l, m)X (l, m)X*(l9, m9)X (l9, m9)], (A10)O O O OX H H H HH 2 2L M l50 l950 m50 m950
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L21 L21 M21 M211
2ˆE{P } 5 E [X*(l, m)X (l, m)X*(l9, m9)X (l9, m9)], (A11)O O O OX V V V VV 2 2L M l50 l950 m50 m950

L21 L21 M21 M211ˆ ˆE{P P } 5 E [X*(l, m)X (l, m)X*(l9, m9)X (l9, m9)], (A12)O O O OX X H H V VH V 2 2L M l50 l950 m50 m950

L21 L21 M21 M211
(T ) 2ˆE{|R (0)| } 5 E [X*(l, m)X (l, m)X*(l9, m9)X (l9, m9)], (A13)O O O OX X V H H VH V 2 2L M l50 l950 m50 m950

L21 L21 M21 M211
(T ) 2ˆE{[R (0)] } 5 E [X*(l, m)X (l, m)X*(l9, m9)X (l9, m9)], (A14)O O O OX X V H V HH V 2 2L M l50 l950 m50 m950

L21 L21 M21 M211
(T )ˆ ˆE{P R (0)} 5 E [X*(l, m)X (l, m)X*(l9, m9)X (l9, m9)], (A15)O O O OX X X H H V HH H V 2 2L M l50 l950 m50 m950

L21 L21 M21 M211
(T )ˆ ˆE{P R (0)} 5 E [X*(l, m)X (l, m)X*(l9, m9)X (l9, m9)]. (A16)O O O OX X X V V V HV H V 2 2L M l50 l950 m50 m950

The first step consist of simplifying the expectation operations inside these expressions using the identity

E [X*X X*X ] 5 E [X*X ]E [X*X ] 1 E [X*X ]E [X*X ], (A17)1 2 3 4 1 2 3 4 1 4 3 2

which is valid for zero-mean, complex, Gaussian random variables (Reed 1962). After applying this identity to
Eqs. (A10)–(A16), each expectation can be expressed as the autocorrelation of X at particular lags; for example,
E[ (l, m)XH(k, n)] 5 R (k 2 l, n 2 m). For example, for (A10)X*H XH

1
2ˆE{P } 5 {E [X*(l, m)X (l, m)]E [X*(l9, m9)X (l9, m9)]OX H H H HH 2 2L M l,l9,m,m9

1 E [X*(l, m)X (l9, m9)]E [X*(l9, m9)X (l, m)]}H H H H

1
25 [R (0, 0)] 1 R (l9 2 l, m9 2m)R (l 2 l9, m 2 m9). (A18)O X X XH H H2 2L M l,l9,m,m9

Then, quadruple summations can be simplified by letting l0 5 l9 2 l, m0 5 m9 2 m, and collecting terms so that

L21 L21 M21 M21 L21 M21

f (l9 2 l, m9 2 m) 5 (L 2 |l0|)(M 2 |m0|) f (l0, m0). (A19)O O O O O O
l50 l950 m50 m950 l052L11 m052M11

Following these steps, the following seven expressions arise:

L21 M211
2 2 2ˆE{P 2 P } 5 (L 2 |l |)(M 2 |m|)|R (l, m)| , (A20)O OX H XH H2 2L M l52L11 m52M11

L21 M211
2 2 2ˆE{P 2 P } 5 (L 2 |l |)(M 2 |m|)|R (l, m)| , (A21)O OX V XV V2 2L M l52L11 m52M11

L21 M211
2ˆ ˆE{P P 2 P P } 5 (L 2 |l |)(M 2 |m|)|R (l, m)| , (A22)O OX X H V X XH V H V2 2L M l52L11 m52M11

L21 M211
(T ) 2 (T ) 2ˆE{|R (0)| 2 |R (0)| } 5 (L 2 |l |)(M 2 |m|)R* (l, m)R (l, m), (A23)O OX X HV X XH V H V2 2L M l52L11 m52M11

L21 M211
(T ) 2 (T ) 2ˆE{[R (0)] 2 [R (0)] } 5 (L 2 |l |)(M 2 |m|)R (l, m)R (2l, 2m), (A24)O OX X HV X X X XH V H V H V2 2L M l52L11 m52M11

L21 M211
(T ) (T )ˆ ˆE{P R (0) 2 P R (0)} 5 (L 2 |l |)(M 2 |m|)R (2l, 2m)R (l, m), (A25)O OX X X H HV X X XH H V H V H2 2L M l52L11 m52M11

L21 M211
(T ) (T )ˆ ˆE{P R (0) 2 P R (0)} 5 (L 2 |l |)(M 2 |m|)R (l, m)R* (l, m). (A26)O OX X X V HV X X XV H V H V V2 2L M l52L11 m52M11
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Because XH(l, m) and XV(l, m) have uncorrelated sig-
nal and noise components, the autocorrelation function
can be decomposed into a sum of the signal (S) and
noise (N) autocorrelation functions; for example, R 5XH

R 1 R . Furthermore, because the dimensions areX XH,S H,N

independent, due to the width of the range-weighting
function [Eq. (4.22) of Doviak and Zrnić (1993)] being
much smaller than the pulse repetition time, two-di-

mensional autocorrelation functions can be decomposed
in a product of one-dimensional sample-time (T) and
range-time (R) autocorrelation functions (see e.g., Dias
and Leitão 1993):

(R) (T ) (R) (T )R (l, m) 5 R (l)R (m) 1 R (l)R (m). (A27)X X X X XH H,S H,S H,N H,N

Double summations can now be decoupled. For in-
stance, (A20) becomes

L21 M211
2 2 (R) 2 (T ) 2ˆE{P 2 P } 5 (L 2 |l |)|R (l)| (M 2 |m|)|R (m)|O OX H X XH H,S H,S2 2L M l52L11 m52M11

L21 M212
(R) (R) (T ) (T )1 Re (L 2 |l |)R (l)[R (l)]* (M 2 |m|)R (m)[R (m)]*O OX X X XH,S H,N H,S H,N2 2 5 6L M l52L11 m52M11

L21 M211
(R) 2 (T ) 21 (L 2 |l |)|R (l)| (M 2 |m|)|R (m)| . (A28)O OX XH,N H,N2 2L M l52L11 m52M11

Assuming that the underlying process V is wide-sense
stationary over the oversampled set (L range samples), for
a Gaussian sample-time correlation function and white
noise (m) 5 S exp[22(psynm)2 1 j2pynm] and (m)(T) (T)R RX XS N

5 Nd(m), where yn 5 y/2ya and syn 5 sy/2ya are the
normalized velocity and spectrum width, respectively
(Doviak and Zrnić 1993), and ya is the maximum un-
ambiguous velocity. If Msy n k 1, summations in (A28)
involving these functions can be approximated as follows:

M21

(T ) 2(M 2 |m|)|R (m)|O XH,S
m52M11

` 2MS H22 2(2ps x)ynø S (M 2 |x |)e dx ø , (A29)HE 1/22p syn2`

M21

(T ) (T )(M 2 |m|)R (m)[R (m)]* 5 MS N, (A30)O X X HH,S H,N
m52M11

M21

(T ) 2 2(M 2 |m|)|R (m)| 5 MN . (A31)O XH,N
m52M11

Closed-form solutions for the summations involving
range-time correlations can be obtained by working with
correlation matrices instead of correlation functions. To
make the conversion, the identity (L 2 | l | )Rl(l) (l)L21S R*l5L11 2

5 tr{C1C2} can be used,A1 where C1 and C2 are the cor-
relation matrices corresponding to the correlation functions
R1 and R2, respectively. The relevant terms from (A28)
are converted as

A1 This can be proved by expressing the trace as the sum of diagonal
elements of the matrix product, expanding the matrix product using the
Hermitian and Toeplitz properties of complex correlation matrices, and
finally performing a simple substitution of summation indexes.

L21

(R)(R) 2 2(L 2 |l |)|R (l)| 5 tr{[C ] }, (A32)O XX H,SH,S
l52L11

L21

(R) (R)(R) (R(L 2 |l |)R (l)[R (l)]* 5 tr{C C }, (A33)O X XX X H,S H,NH,S H,N
l52L11

L21

(R)(R) 2 2(L 2 |l |)|R (l)| 5 tr{[C ] }. (A34)O XX H,NH,N
l52L11

Correlation matrices for the signal and noise compo-
nents of the whitened sequence XH can be obtained from
the correlation matrix of the range (correlated) samples
VH by recalling that XH 5 WVH [Eq.(3)], where W 5
H21 and 5 H*HT. Due to the linear relationship(R)CVH,S

between VH and XH, the correlation matrix of XH can
be written as 5 W* WT. Here is decomposed(R) (R) (R)C C CX V VH H H

into its signal and noise components and distributing
the matrix products:

(R) (R) T TC 5 W*(SC 1 N I)W 5 S I 1 N(W*W ); (A35)X VH H,S

therefore, 5 I and 5 W*WT. Finally, Eqs.(R) (R)C CX XH,S H,N

(A32)–(A34) can be written as
(R) 2 2tr{[C ] } 5 tr{I } 5 L, (A36)XH,S

(R) (R) T Ttr{C C } 5 tr{W*W } 5 tr{W W*}X XH,S H,N

(R) 215 tr{[C ] }, (A37)VH,S

(R) (R)2 22T Ttr{[C ] } 5 tr{W*W W*W } 5 tr{[C ] }. (A38)X VH,N H,S

For the ideal range-time correlation coefficient (corre-
sponding to a rectangular transmitter pulse and an in-
finite receiver bandwidth) the elements of the received
signal correlation matrix are ( ) ij 5 1 2 | j 2 i | L21.(R)CVH,S

Due to the structure of this matrix, a closed-form ex-
pression for its inverse can be obtained for the general
case. It can be verified by matrix multiplication that
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21(R)[C ]VH,S

 L(L 1 2) L L
2 0 · · · 0

2L 1 2 2 2L 1 2

L L
2 L 2 5 0

2 2

L 0 2 5 5 5 _
25 . 

_ 5 5 5 5 0

L
0 5 5 L 2

2

L L L(L 1 2) 0 · · · 0 2
2L 1 2 2 2L 1 2 

(A39)

Then, tr{[ ]21} 5 L3(L 1 1)21. In addition, for sym-(R)CVH,S

metric matrices tr(A2) 5 S i Sf and from (A39) we2(A)ij

find that tr{[ ]22} 5 1/2L3(3L2 1 2L 2 3)(L 1 1)22.(R)CVH,S

The results of (A29)–(A31) and (A36)–(A38) are in-
troduced into (A28):

2S 1 2S N LH H2 2ˆE{P 2 P } 5 1X HH L M L 1 12Ms Ïpyn

2 2N L(3L 1 2L 2 3)
1 . (A40)

2M 2(L 1 1)

In a similar way, expressions for Eqs. (A21)–(A26) can
be derived to use in Eqs. (A7), (A8), and (A9). Follow-
ing the steps described above, the simplified expressions
for the variances of WTB polarimetric variable esti-
mators are

22 2 2Z 1 2 r 1 L N L(3L 1 2L 2 3) NDR HV 2ˆVar{Z } 5 1 2(1 1 Z ) 1 (1 1 Z ) , (A41)DR DR DR 21 2 1 2 1 2[ ]M L L 1 1 S 2(L 1 1) S(WTB) s Ïp H Hyn

2 222 2180 1 r 2 11 1 1 1 Z L N Z L(3L 1 2L 2 3) NHV DR DRVar{f̂ } 5 1 1 , (A42)DP 2 2 21 2 1 2 1 2 1 2 1 2 1 2[ ]p 2M L r L 1 1 S r 2(L 1 1) S(WTB) 2s Ïp HV H HV Hyn

2 4 21 1 2 2r 1 r 1 (1 2 r )(1 1 Z ) L NHV HV HV DRVar{r̂ } 5 1HV 51 2 1 2[ ]M L 2 L 1 1 S(WTB) 4s Ïp Hyn

22 2 2 2r 1 2Z 1 r Z L(3L 1 2L 2 3) NHV DR HV DR1 . (A43)
21 2 1 2 64 2(L 1 1) SH

The same procedure can be repeated for the case of a
digital matched filter where the only difference with the
previous case is in the way that the total powers for the
horizontal and vertical channels and lag-zero cross-cor-
relation function are estimated. For the matched-filter case

M211
2P̂ 5 |Y (m)| , (A44)OY HH M m50

M211
2P̂ 5 |Y (m)| , (A45)OY VV M m50

M211
(T )R̂ (0) 5 Y*(m)Y (m), (A46)OY Y V HH V M m50

where Y(m) 5 k V(l, m) is the output of theL21S l50

digital matched filter, and k 5 is a nor-2Ï3/(2L 1 1)
malization factor that preserves the power of the
input signal under ideal conditions. Following the
same steps as outlined for the previous case, the var-
iances of the matched-filter-based estimators are ob-
tained as

2 22 2Z 1 2 r 3L N 3L NDR HV 2ˆVar{Z } 5 1 2(1 1 Z ) 1 (1 1 Z ) , (A47)DR DR DR2 21 2 1 2 1 2 1 2[ ]M 2L 1 1 S 2L 1 1 S(MFB) s Ïp H Hyn

2 2 222180 1 r 2 1 1 1 Z 3L N Z 3L NHV DR DRVar{f̂ } 5 1 1 , (A48)DP 2 2 2 21 2 1 2 1 2 1 2 1 21 2 1 2[ ]p 2M r 2L 1 1 S r 2L 1 1 S(MFB) 2s Ïp HV H HV Hyn
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2 4 21 1 2 2r 1 r (1 2 r )(1 1 Z ) 3L NHV HV HV DRVar{r̂ } 5 1HV 251 2 1 2[ ]M 2 2L 1 1 S(MFB) 4s Ïp Hyn

2 22 2 2r 1 2Z 1 r Z 3L NHV DR HV DR1 . (A49)
21 21 2 1 2 64 2L 1 1 SH

APPENDIX B

Simulation of Oversampled Polarimetric Weather
Echoes

This appendix describes a simulation method that pro-
duces a dual-polarization pair of oversampled time-se-
ries data VH and VV. The two time series exhibit the
required marginal structure, that is, correlation in both
range and sample time. Simultaneously, it is required
to specify the properties of the joint density through the
cross-correlation function (m). First, correlation(T)RV VH V

along range time is imposed by dividing the resolution
volume into ‘‘slabs’’ and by weighting the contributions
from each slab using the proper range-weighting func-
tion. Second, the well-known procedure for generating
single-polarization time series by Zrnić (1975) is used
to shape the autocorrelation along sample time. Finally,
the procedure by Galati and Pavan (1995) for generating
a pair of correlated time series is used to impose the
cross-correlation between horizontal and vertical chan-
nel time series. Note that for bivariate Gaussian pro-
cesses, the auto- and cross-correlation functions (or their
equivalent power spectral densities) provide a complete
description of the underlying processes. The first two
steps of the simulation are described in detail in Torres
and Zrnić (2003) for single-polarized weather echoes.
The third step, which is specific to the generation of
dual-polarized time-series data, is described next.

Let X and Y be unit-power, independent time series
with the required marginal range- and sample-time cor-
relations [r (R) and r (T )]. The signals from the horizontal
and vertical channels can be constructed by means of
the following transformation:

V (l, n) 5 gX(l, n)H

V (l, n) 5 aX(l, n) 1 bY(l, n), (B1)V

where g, a, and b are complex constants to be deter-
mined. It is not difficult to verify that this transformation
produces the desired result. In the case of VH, it is ob-
vious that the range- and sample-time correlations are
the prescribed ones:

(R) (T )R (m) 5 E [V*(l, n)V (l 1 m, n)]/R (0)V H H VH H

2 (R)5 |g | r (m)/S , (B2)H

(T ) 2 (T )R (m) 5 E [V*(l, n)V (l, n 1 m)] 5 |g | r (m). (B3)V H HH

The required marginal correlations of X are clearly

transferred into VH. Further, since X has unit power, (B2)
and (B3) give

2| g | 5 S .H (B4)

For VV, it follows that
(R) (T )R (m) 5 E [V*(l, n)V (l 1 m, n)]/R (0)V V V VV V

2 (R) 2 (R)5 [|a| R (m) 1 |b| R (m)]/SX Y V

2 2 (R)5 (|a| 1 |b| )r (m)/S , (B5)V

(T )R (m) 5 E [V*(l, n)V (l, n 1 m)]V V VV

2 (T ) 2 (T )5 |a| R (m) 1 |b| R (m)X Y

2 2 (T )5 (|a| 1 |b| )r (m). (B6)

Again, the required marginal correlation is transferred
to VV, and to obtain the required correlation in range

2 2| a | 1 | b | 5 S .V (B7)

The cross-correlation between VH and VV is
(T )R (m) 5 E [V*(l, n)V (l, n 1 m)]V V V HH V

(T )5 ga*r (m), (B8)

and since (m) 5 (0)r (T )(m) (Sachidananda and(T) (T)R RV V V VH V H V

Zrnić 1986) it follows that
(T)ga* 5 R (0).V VH V

(B9)

Summarizing, constants g , a, and b must be deter-
mined from Eqs. (B4), (B7), and (B9). This is an un-
derdetermined set of equations, so g can be chosen to
be real to get g 5 and a 5 [ (0)]*/ 5(T )ÏS R ÏSH V V HH V

rHVe . Finally, one can solve for | b | and2jfDPÏSV

choose its argument to be the same as a’s to get b 5
e . Then, the transformation be-2 2jfDPÏS (1 2 r )V HV

comes

V (l, n) 5 ÏS X(l, n)H H

V (l, n) 5 ÏS [r X(l, n)V V HV

2 2jfDP1 Ï1 2 r Y(l, n)]e . (B10)HV

A different technique for generating dual-polarized
echoes was introduced by Chandrasekar and Bringi
(1986). This approach makes use of the structure of the
covariance matrix of the spectral components of a bi-
variate Gaussian time series and is intrinsically a fre-
quency-domain method. Consequently, it is computa-
tionally more intensive than the procedure described by
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Galati and Pavan (1995). Although both methods yield
equivalent results, it turns out that Chandrasekar’s ap-
proach is more general because it can simulate bivariate
Gaussian random processes with arbitrary auto- and
cross-correlation functions. On the other hand, the meth-
od described by (B10) requires that the two random
processes exhibit the same sample-time autocorrelation
and that the cross-correlation be proportional to the mar-
ginal autocorrelation. In other words, the method works
well only if 5 5 k , which holds true for(T) (T) (T)R R RV V V VV H H V

the case of horizontally and vertically polarized weather
echoes (Sachidananda et al. 1986).
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