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ABSTRACT

Processing oversampled signals in range with a whitening transformation has been proposed as a means

to reduce the variance of meteorological variable estimates on polarimetric Doppler weather radars.

However, the original formulation to construct decorrelation transformations does not account for mis-

matches in the polarimetric channels, which results in abnormally biased polarimetric variable estimates if

the two channels are not perfectly matched. This paper extends the initial formulation and demonstrates

that, by properly accounting for the differences in the polarimetric channels, it is always possible to pro-

duce optimum estimates of all meteorological variables. Simulation analyses based on the reported

characteristics of existing polarimetric radars are included to illustrate the performance of the proposed

transformations.

1. Introduction

Range oversampling followed by a decorrelation

transformation is a recently suggested method for in-

creasing the number of independent samples from

which to estimate the Doppler spectrum and its mo-

ments, as well as several polarimetric variables on pulsed

weather radars (Torres and Zrni�c 2003a,b). Range-

oversampling techniques rely on the precise knowledge

of the range correlation of oversampled signals, which is

a function of the transmitter pulse envelope, the receiver

filter impulse response, and the distribution of scatterers

illuminated by the radar. Theoretical and simulation

studies demonstrating the advantages of these techniques

have been successfully verified on weather data collected

with a single-transmitter dual-polarization radar (Ivi�c

et al. 2002; Torres and Ivi�c 2005). In contrast, recent

experimental results on a dual-transmitter system have

revealed some difficulties: if the amplitude and/or phase

mismatch between transmission pulses is disregarded in

the formulation of the decorrelation transformation,

processing of range-oversampled dual-polarization sig-

nals with the standard whitening transformation can

produce abnormally biased1 polarimetric variable esti-

mates (Choudhury and Chandrasekar 2007). These au-

thors concluded that matching the correlation of samples

in range for the horizontal and vertical channels is criti-

cal to effectively use the whitening transformation in-

troduced by Torres and Zrni�c (2003b). Further, they

recognized ‘‘the need to develop a variant of the whit-

ening transformation algorithm’’ for dual-polarization

systems with mismatched channels. Recently, Hefner and

Chandrasekar (2008) proposed a Hermitian symmetric

whitening transformation as a means to mitigate the

biases observed when applying the originally proposed

whitening transformation. In addition, a Hermitian

transformation was shown to fix numerical inconsis-

tencies that could arise in the construction of whitening

transformations from mismatched polarimetric channels.

Although these results are very encouraging, the pro-

posed whitening transformation does not remove the

biases completely and the authors conclude that more

work is needed to determine unbiased whitening

(UWTB) methods. This is the purpose of this work.
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1 Throughout this work, the term abnormally biased is used to

denote range-oversampling polarimetric variable estimators having

biases larger than their standard (no oversampling) counterparts.
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than their standard counterparts are termed normally biased.
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Although having a dual-polarization radar system with

matched channels is ideal for proper measurement of the

polarimetric variables, there are situations in which, de-

spite the best design efforts, one must deal with a system

with mismatched polarization channels. Systems with one

transmitter and a power splitter, such as the National Se-

vere Storms Laboratory KOUN radar (Zahrai and Zrni�c

1993), are relatively immune to mismatches in the hori-

zontal and vertical channels, as demonstrated by Torres

and Ivi�c (2005). Still, differences may arise because of

variations in the hardware paths specific to each channel.

In contrast, systems with dual transmitters, such as the

Colorado State University–University of Chicago–Illinois

State Water Survey (CSU–CHILL) radar (Brunkow et al.

2000), are more susceptible to waveform mismatches, as

reported by Choudhury and Chandrasekar (2007). This

problem is aggravated with magnetron-based radars,

because precise control of transmitted waveform phases

and frequencies is not possible. Despite this limitation,

dual-transmitter systems may be preferred as a way to

increase the sensitivity of the radar or to exploit the

ability to control each transmitted waveform individu-

ally, such as required by the method suggested by

Chandrasekar et al. (2007) to simultaneously perform

co- and cross-polarization measurements.

This work demonstrates that, by properly accounting

for the amplitude and/or phase differences in the two

polarization channels, it is always possible to obtain

acceptable polarimetric variable estimates from trans-

formed range-oversampled data. Nonetheless, the var-

iance of these estimators increases as the degree of

mismatch between the horizontally and the vertically

polarized transmitted pulses increases. In such cases, es-

timators that achieve maximum variance reduction can be

obtained by solving constrained minimization problems.

The paper is organized as follows: section 2 reviews

the theory behind range-oversampling techniques on

dual-polarimetric radars. Section 3 examines the bias in

auto- and cross-correlation estimates for systems with

matched channels. This is followed by a similar analysis

for systems with mismatched channels in section 4, in

which a formulation that leads to normally biased esti-

mates of the polarimetric variables is presented. Section 5

discusses the construction of optimum transformations

for each of the polarimetric variables. The final section

demonstrates the performance of the different trans-

formations using simulated data.

2. Range oversampling in dual-polarimetric radars

Traditional sampling of weather radar signals V oc-

curs at a rate of t21, where t is the duration of the

transmitted pulse. Oversampling in range entails ac-

quiring polarimetric time series data at increased rates so

that L complex samples are collected during the time t.

This is termed as oversampling by a factor of L and has

become feasible with the advent of commercial single-

board digital receivers (Ivi�c et al. 2003a) and digital

signal processors (Zahrai et al. 2002).

a. Characterization of range-oversampled
dual-polarimetric signals

Let vH and vV be the sets of L oversampled signals in

range for the horizontal (H) and vertical (V) polariza-

tion channels for a given sample time m. In vector no-

tation,

vH,V 5 [VH,V(0, m) VH,V(1, m) . . . VH,V(L� 1, m)] T
,

(1)

where the superscript T denotes matrix transposition

and the subscript H, V (read as H or V ) denote signals

corresponding to either the horizontal or vertical chan-

nels. The first index in the time series corresponds to

range time; the second corresponds to sample time. The

two-dimensional correlation of range-oversampled sig-

nals considering both range- and sample-time lags is

defined as a separable function:

R
V

Y
V

Z
(k, n) 5 E[V

Y
*(l, m)V

Z
(l 1 k, m 1 n)]

5 r
(R)
V

Y
V

Z
(k)R

(T)
V

Y
V

Z
(n), (2)

where k and n are range- and sample-time lags, E[.] is

the expected value operation, the superscript * denotes

complex conjugation, superscripts (R) and (T) designate

range- and sample-time correlations, and subscripts Y

and Z can be either H or V denoting signals from the

horizontal or vertical channels (e.g., r
(R)
VH VH

is the range-

time autocorrelation for the horizontal channel and

r
(R)
VHVV

is the range-time cross correlation between the

horizontal and vertical channels). If the resolution vol-

ume is uniformly filled with scatterers and the effects of

receiver noise are ignored, the correlation coefficient of

the oversampled range samples is solely determined by

the transmitted pulse shape and the receiver filter impulse

response. Let pH and pV be the normalized ‘‘modified’’

pulse envelopes for the horizontal and vertical channels

(i.e., the transmitted pulses after each channel’s receiver

filter). For a calibrated system, the amplitudes of the

pulses are such that they do not bias the power in each

channel; that is, SL�1
l50jpH,V(l)j2 5 1. Then, the correla-

tion coefficient for range samples can be obtained as

(Torres and Zrni�c 2003a)

r
(R)
VY VZ

(l) 5 p
Y
*(l) * pZ(�l), (3)
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where * is the convolution operation. From this, nor-

malized range correlation matrices can be constructed as

fC
V

Y
V

Z
g

i, j
5 r

(R)
V

Y
V

Z
( j� i), (4)

where {C}i,j denotes the element in the ith row and jth

column of the Hermitian matrix C.

b. Estimation of auto- and cross correlations

Oversampled signals in range can be used to improve

the quality of meteorological variable estimates without

increasing volume acquisition times. Because the goal is

to produce better-quality estimates for the traditional

(nonoversampled) range gate spacing, a set of signals at

L oversampled range gates are suitably combined. With

this technique, auto- and cross correlations are esti-

mated at each of the L oversampled range gates. These

L correlation estimates are averaged to produce one

correlation estimate with reduced variance. As with

traditional sampling, averaged auto- and cross correla-

tions for the first few lags are used to compute the

spectral moments and the polarimetric variables. The

focus of this paper is on the estimation of the polari-

metric variables: differential reflectivity ZDR, differen-

tial phase FDP, and magnitude of the cross-correlation

coefficient rHV. Classical estimators are given by

Ẑ
DR

5
R̂

V
H

V
H

(0)

R̂
V

V
V

V
(0)

, (5)

F̂
DP

5 arg[R̂
VHVV

(0)], and (6)

r̂
HV

5
R̂

V
H

V
V
(0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R̂
V

H
V

H
(0)R̂

V
V

V
V
(0)

q , (7)

where the ‘‘hat’’ is used to denote an estimate. Hence,

only zero-lag auto- and cross correlations need to be

examined, and the lag indexing will be dropped from the

notation for simplicity. Sample-time zero-lag auto- and

cross-correlation estimates from oversampled signals

are given by

R̂
(T)

V
Y

V
Z

5
1

ML
�
L�1

l50
�

M�1

m50
V

Y
*(l, m)VZ(l, m), (8)

where M is the number of samples in the dwell time and

Y and Z can again be either H or V. Equation (8) can be

rewritten as

R̂
(T)

V
Y

V
Z

5
1

M
�

M�1

m50

1

L
�
L�1

l50
V

Y
*(l, m)VZ(l, m)

" #
, (9)

where it is more evident that it is possible to produce

correlation estimates with lower variance by reducing

the variance of range-averaged correlations. In other

words, we would like to transform range-oversampled

signals to produce uncorrelated data that can be ex-

ploited to maximize the variance reduction through

averaging (Torres and Zrni�c 2003a). In addition, this

transformation must result in unbiased correlation es-

timates to preserve (in average) the integrity of the

polarimetric variables (see the appendix).

The expected value of (9) is

E[R̂
(T)

V
Y

V
Z
] 5

1

ML
�
L�1

l50
�

M�1

m50
E[V

Y
*(l, m)VZ(l, m)] 5 R

V
Y

V
Z
.

(10)

Using (2) and (4),

E[R̂
(T)

VY VZ
] 5 r

(R)
V

Y
V

Z
R

(T)
V

Y
V

Z
5

tr(C
V

Y
V

Z
)

L
R

(T)
V

Y
V

Z
, (11)

where tr(.) is the trace of a matrix. The normalized bias

of the correlation estimator is

Bias[R̂
(T)

V
Y

V
Z
]

R
(T)
V

Y
V

Z

5
E[R̂

(T)

V
Y

V
Z
]� R

(T)

V
Y

V
Z

R
(T)
V

Y
V

Z

5
tr(C

V
Y

V
Z
)

L
� 1,

(12)

where it is evident that unbiased correlation estimates

require tr(CV
Y

V
Z
) 5 L.

c. Transformation of range-oversampled signals

A whitening transformation on range-oversampled

time series data can be used to decorrelate these signals

before averaging; that is, through a linear transforma-

tion, a set of L correlated complex samples is trans-

formed into a set of L decorrelated (or whitened)

complex samples. Because data are uncorrelated, av-

eraging covariances after whitening oversampled sig-

nals reduces the variance of estimates by a factor of L

(Torres and Zrni�c 2003a).

The whitening transformation W can be constructed as

W 5 H�1, (13)

where H comes from the square-root decomposition

of the normalized autocorrelation matrix; that is, C 5

H*HT. It is important to note that this decomposition is

not unique. As argued by Torres et al. (2004), a family

of whitening transformations can be obtained by pre-

multiplying the inverse of a given matrix square root of

C with any unitary matrix. This fact was exploited by
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Hefner and Chandrasekar (2008) to construct Hermitian

symmetric whitening transformations based on the ei-

genvalue decomposition of C.

Regardless of the H matrix used in (13), a vector x of

L transformed oversampled data at a given sample time

is obtained as

x
H,V

5 Wv
H,V

, (14)

and range correlation matrices for the transformed data

are

CX
Y

X
Z

5 E[x
Y
*xT

Z
] 5 W*E[v

Y
*vT

Z
]WT

5 W*CV
Y

V
Z
WT, (15)

where Y and Z can again be either H or V.

3. Range oversampling on systems with matched
polarimetric channels

For a radar system with perfectly matched channels,

the normalized modified pulses for the H and V chan-

nels are the same; that is, pH 5 pV. This is not an un-

realistic assumption for dual-polarization radars with one

transmitter. In this situation, the normalized auto- and

cross-correlation matrices are the same [cf. (3)]; that is,

C
VH VH

5 C
VV VV

5 C
VH VV

.

a. Autocorrelation estimation

Using (12), the normalized bias of the autocorrelation

estimator on transformed data is

Bias[R̂
(T)

X
H

X
H

]

R
(T)
X

H
X

H

5
tr(C

X
H

X
H

)

L
� 1 5

tr(W*C
V

H
V

H
WT)

L
� 1.

(16)

The matrix product inside the trace can be simplified

using (13) and a square-root decomposition of C
VH VH

as

W*C
VH VH

WT 5 (H�1)*H*HT(H�1)T

5 (H�1H)*(H�1H)T
5 I, (17)

where I is the identity matrix (i.e., transformed data are

uncorrelated). Hence, (16) becomes

Bias[R̂
(T)

X
H

X
H

]

R
(T)
X

H
X

H

5
tr(I)

L
� 1 5 0, (18)

and the autocorrelation estimator on transformed data

is unbiased with the transformation defined by (13). The

same is true for the V channel autocorrelation estimator

on transformed data, because C
VH VH

5 C
VV VV

and W

also whitens the V channel data.

b. Cross-correlation estimation

Similarly,

Bias[R̂
(T)

X
H

X
V
]

R
(T)
X

H
X

V

5
tr(C

X
H

X
V
)

L
� 1 5

tr(W*C
V

H
V

V
WT)

L
� 1

5
tr(I)

L
� 1 5 0. (19)

Thus, the cross-correlation estimator on transformed

data with the transformation defined by (13) is also

unbiased because C
VH VH

5 C
VHVV

.

4. Range oversampling on systems with
mismatched polarimetric channels

For a radar system with mismatched channels, the

normalized modified pulses for the H and V channels

are different; that is, pH 6¼ pV. This is more likely to

occur in dual-polarization radars with dual transmitters.

In this case, auto- and cross-correlation matrices are

generally different. Therefore, a whitening matrix that

works for the H channel may not work for the V channel

and vice versa. Then, it makes sense to consider two in-

dependent whitening transformations, WH and WV —one

for each channel. Transformed data x are obtained as

[cf. (14)]

x
H,V

5 W
H,V

v
H,V

, (20)

and normalized range correlation matrices are [cf. (15)]

CXY XZ
5 W

Y
*C

VY VZ
WT

Z. (21)

a. Autocorrelation estimation

Repeating the process in the previous section, the

normalized bias of the autocorrelation estimator on

transformed data is

Bias[R̂
(T)

X
H

X
H

]

R
(T)
X

H
X

H

5
tr(C

X
H

X
H

)

L
� 1 5

tr(W
H
*C

V
H

V
H

WT
H)

L
� 1

5
tr(I)

L
� 1 5 0, (22)

hence the estimator is unbiased with WH defined by

(13). The same is true for the V channel autocorrelation

estimator, with WV derived from an analogous decom-

position of C
VV VV

.
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b. Biased cross-correlation estimation

A similar analysis as above reveals that

Bias[R̂
(T)

X
H

X
V
]

R
(T)
X

H
X

V

5
tr(C

X
H

X
V
)

L
� 1 5

tr(W
H
*C

V
H

V
V
W

T

V)

L
� 1.

(23)

Hence, the cross-correlation estimator is biased be-

cause, in general, tr(W
H
*C

VH VV
WT

V) 6¼ L. A simple ex-

ample suffices to demonstrate this problem. Consider

the case of mismatched H and V channels such that

pV 5 eja pH, where a is a real number. Then, according

to (3), CVV VV
5 CVHVH

5 H*HT and CVHVV
5 ejaCVHVH

.

If WH 5 WV 5 H21 are the whitening transformations for

each channel, it is easy to see that

tr(W
H
*C

V
H

V
V
WT

V) 5 tr[(H�1)*(ejaH*HT)(H�1)T]

5 tr(ejaI) 5 Leja, (24)

and these whitening transformations would result in

unbiased cross-correlation estimates only if a is an in-

teger multiple of 2p.

c. Unbiased cross-correlation estimation

The result in (23) is useful for constructing transfor-

mations that lead to unbiased cross-correlation esti-

mates. As shown before, the condition for unbiased

estimates is given by

tr(W
H
*C

V
H

V
V
WT

V) 5 L; (25)

this is easily achieved by properly scaling the H and V

transformation matrices; that is, let a new set of scaled

transformation matrices for the cross-correlation esti-

mator be ~W
H,V

5 ~g
H,V

W
H,V

, where ~g
H,V

are complex

constants (the tilde is used throughout to discriminate

the cross-correlation estimator transformations from

the ones corresponding to the autocorrelation estima-

tor). With these new transformations, (25) becomes

~g
H
* ~g

V
tr(W

H
*C

V
H

V
V
WT

V) 5 L (26)

and the scaling factors must be chosen such that

~g
H
* ~g

V
5

L

tr(W
H
*C

V
H

V
V
WT

V)
. (27)

A solution to this equation is

~g
H
* 5 ~g

V
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

tr(W
H
*C

V
H

V
V
WT

V)

s
. (28)

Note that with this formulation, the transformation ma-

trices used in the autocorrelation estimators are scaled

differently from the ones used in the cross-correlation

estimator, but their basic structure is the same (i.e.,

both sets are based on whitening transformations for

each channel).

d. General unbiased correlation estimation

As will be shown in section 6, scaled transformations

based on whitening transformations for each channel

may not result in polarimetric variable estimators with

the lowest possible variance. Thus, it may be advanta-

geous to explore other transformation structures. Other

transformations such as pseudowhitening have been

proposed as a way to increase the effective number of

independent samples while minimizing the noise en-

hancement effects inherent in the whitening transforma-

tion (Torres et al. 2004). In general, we need a procedure

to determine the best transformation matrices that re-

sult in unbiased correlation estimates for any given sit-

uation without being constrained to choosing whitening

transformations. The general formulation below pro-

duces unbiased auto- and cross-correlation estimates for

any transformation matrix structure.

Let, AH,V be the set of transformations for the auto-

correlation estimator, and ~AH,V be the set for the cross-

correlation estimator, where the basic structure of each

matrix can be determined using different criteria (e.g.,

AH,V can be chosen as the whitening matrices for the H

and V channel data, whereas ~AH,V can be chosen as the

matrices that diagonalize the range cross-correlation

matrix C
VV VH

). To produce unbiased auto- and cross-

correlation estimates, these four matrices require scaling

given by respective factors, which could be determined as

gH,V 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

tr(A
H,V
* C

V
H,V V

H,V
AT

H,V)

vuut and (29)

~g
H
* 5 ~gV 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

tr(~A
H
*C

V
H

V
V

~A
T

V)

vuut . (30)

Hence, scaled transformations are WH,V 5 gH,VAH,V and
~WH,V 5 ~gH,V

~AH,V . Note that with this scaling, auto- and

cross-correlation estimates are always unbiased. How-

ever, the variance of these estimators depends on the

basic structure chosen for each transformation matrix.

5. Optimum unbiased correlation estimation

A general way to construct transformations that lead

to unbiased correlation estimators was presented in the
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previous section. The next logical step is to find the

optimum set of transformations that produces unbiased

correlation estimates and leads to polarimetric variables

with the lowest variance. In general, for a polarimetric

variable estimator û, where u is a function of one or

more correlation estimates, we must find the solution to

the following constrained minimization problem:

min
W

H
,W

V
,~W

H
,~W

V

Var[û]

subject to

tr(W
H
*C

V
H

V
H

WT
H) 5 L, tr(W

V
*C

V
V

V
V
WT

V) 5 L, and

tr( ~W
H
*C

V
H

V
V

~W
T

V) 5 L, (31)

where Var[û] is a function of one or more transfor-

mation matrices W
H

, W
V

, ~W
H

, and ~W
V

. Note that the

constraint in the minimization problem guarantees po-

larimetric variable estimates with acceptable biases

(see the appendix). As presented in the previous sec-

tion, this constraint is easily satisfied by the scaling in

Eqs. (29) and (30) for generic (not necessarily whiten-

ing) transformation matrices W
H,V

and ~W
H,V

corre-

sponding to the auto- and cross-correlation estimators,

respectively.

The solution to the problem in (31) depends on the

theoretical form that the variance of polarimetric vari-

able estimates takes as a function of the transformation

matrices. Hence, the first step to finding the solution for

a particular estimator is to express its variance as a

function of the normalized auto- and cross-correlation

matrices given in (21), which will explicitly show the

dependency on the oversampled data transformations.

In general, variances of the polarimetric variables esti-

mated from transformed signals [cf. (20)] depend on

expected values of the form E[R̂
(T)
X

Y1
X

Z1

(R̂
(T)
X

Y2
X

Z2

)*],

where R̂
(T)

X
Yi

X
Zi

are sample-time zero-lag auto- or cross-

correlation estimates given by (9) (Y1, Y2, Z1, and Z2

can be either H or V to denote transformed signals from

either polarimetric channel). This generic quantity can

be expanded as

E[R̂
(T)

X
Y1

X
Z1

(R̂
(T)

X
Y2

X
Z2

)*]

5
1

L2
�
L�1

l50
�
L�1

l950
E[X

Y1
*(l)X

Z1
(l)XY2

(l9)X
Z2
*(l9)], (32)

where the sample-time dependence is purposely omit-

ted because we are looking at transformations that only

affect correlations along range time. For zero-mean

complex Gaussian random variables, (32) can be sim-

plified as (Reed 1962)

This result will be used next to express the variance of

ZDR, FDP, and rHV as functions of the H and V trans-

formation matrices.

The differential reflectivity estimator for transformed

oversampled data using simultaneous transmission and

reception of horizontally and vertically polarized signals

is given by

Ẑ
DR

5
R̂

(T)

XH XH

R̂
(T)

X
V

X
V

. (34)

Hence, for a normally biased ZDR estimator, we need a

set of transformations that leads to unbiased estimates

of autocorrelations (see the appendix); that is, trans-

formed signals are obtained as xH,V 5 WH,V vH,V, where

WH,V satisfies tr(W
H,V
* C

VH,V VH,V
WT

H,V) 5 L. The vari-

ance of the estimator in (34) was given by Sachidananda

and Zrni�c (1985) and is adapted here for transformed

oversampled signals as

E[R̂
(T)

X
Y1

X
Z1

(R̂
(T)

X
Y2

X
Z2

)*] 5 R
X

Y1
X

Z1

RX
Z2

X
Y2

1
1

L2
�
L�1

l50
�
L�1

l950
R

X
Y1

X
Y2

(l9� l, 0)R
X

Z2
X

Z1

(l � l9, 0)

5 R
X

Y1
X

Z1

R
X

Y2
X

Z2

* 1 RX
Y1

X
Y2

R
X

Z1
X

Z2

*
1

L2
tr(C

X
Y1

X
Y2

C
X

Z1
X

Z2

*T ). (33)

Var(Ẑ
DR

) 5 Z2
DR Var

R̂
(T)

XHXH

R
(T)
X

H
X

H

0
@

1
A1 Var

R̂
(T)

X
V

X
V

R
(T)
X

V
X

V

0
@

1
A� 2 Cov

R̂
(T)

XH XH

R
(T)
X

H
X

H

,
R̂

(T)

X
V

X
V

R
(T)
X

V
X

V

0
@

1
A

2
4

3
5. (35)
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Using (33) and after mathematical manipulation, this

expression becomes

Var(Ẑ
DR

) 5
Z2

DR

L2
[tr(C2

X
H

X
H

) 1 tr(C2
X

V
X

V
)

� 2r2
HVtr(C

XHXV
C

XH XV
*T )], (36)

where

CX
H

X
H
5 W

H
*C

V
H

V
H

WT
H , (37)

CX
V

X
V
5 W

V
*C

V
V

V
V
WT

V , and (38)

CX
H

X
V
5 W

H
*C

V
H

V
V
WT

V . (39)

The differential phase estimator is given by

F̂
DP

5 arg(R̂
(T)
~X

H
~X

V
). (40)

Hence, for a normally biased FDP estimator, we need a

set of transformations that lead to unbiased estimates

of the cross correlation (see the appendix). In this case,

transformed signals are obtained as ~X
H,V

5 ~W
H,V

v
H,V

,

where ~W
H,V

satisfy tr( ~W
H
*C

VH VV

~W
T

V) 5 L. The variance

of the estimator in (40) was given by Ryzhkov and Zrni�c

(1998) and is adapted here as

Var(F̂
DP

) 5
1

2
Re E

R̂
(T)
~X

H
~X

V

R
(T)
~X

H
~X

V

������
������
2

2
64

3
75� E

R̂
(T)
~X

H
~X

V

R
(T)
~X

H
~X

V

0
@

1
A

2
2
64

3
75

8><
>:

9>=
>;.

(41)

Using similar manipulations, this expression becomes

Var(F̂
DP

) 5
1

2L2
Re[r�2

HVtr(C ~X
H

~X
H

C ~X
V

~X
V
)� tr(C2

~X
H

~X
V
)].

(42)

The correlation matrices in this equation are similar to

(37), (38), and (39), except that Xs and Ws carry a tilde.

Finally, the magnitude of the cross-correlation coef-

ficient estimator is given by

r̂
HV

5
jR̂(T)

~X
H

~X
V
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R̂
(T)

X
H

X
H

R̂
(T)

X
V

X
V

r . (43)

Unlike the previous two estimators, for a normally biased

estimator of rHV, we need two sets of transformations—

one for unbiased autocorrelation estimates and another for

unbiased cross-correlation estimates—that is, two sets of

transformed signals are needed. As shown in (43), the tilde

is again used to distinguish the set of transformed data used

in the estimation of the cross correlation. The variance of

rHV estimates for simultaneous transmission and reception

of horizontally and vertically polarized signals was given

by Torlaschi and Gingras (2003) and is adapted here as

where correlation matrices are defined as in (37)–(39),

except that tilde and nontilde matrices appear at the

same time in some cases (e.g., C ~XHXV
5 ~WH*CVHVV

WT
V).

It is important to recall that the use of a single opti-

mum transformation matrix applies only if polarimetric

channels are perfectly matched. If this is not the case,

each polarimetric variable requires its own transfor-

mation matrix set for optimum estimates (i.e., two

transformation matrices for ZDR, another two for FDP,

and yet another four for rHV). These variable-specific

transformation sets are obtained by solving (31) with

the functions in (36), (42), and (45). As in the case of
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In terms of normalized auto- and cross-correlation matrices, this expression becomes
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matched channels, these transformation sets can be

precomputed to reduce the computational complexity

of the optimum unbiased estimators. However, because

the transformations arising from the constrained mini-

mization of (36), (42), and (45) depend on rHV, a

transformation set should be precomputed for every

single value of rHV between 0 and 1—a daunting task. In

practice, it suffices to precompute transformation sets

for a finite set of rHV values (e.g., 20 sets would cover

the range of rHV values with a resolution of 0.05) and

select (in real time) the set that best matches the situ-

ation at hand to get an ‘‘almost optimum’’ estimator

performance. Additionally, rHV is not known a priori

but is one of the variables to be estimated from over-

sampled data. To handle this apparent paradox, an

initial estimate of rHV could be obtained from non-

oversampled (or decimated) data to select the proper

transformation set using a lookup table. Even with

precomputed sets of transformations, a real-time im-

plementation of optimum unbiased transformation

(OUTB) estimators on polarimetric radars with mis-

matched channels would be computationally more ex-

pensive than biased whitening (WTB) estimators on

systems with matched channels; that is, oversampled

time series data for the H and V channels have to be

transformed 4 times each, instead of just once as in (14).

Also, estimates of auto- and cross correlations cannot

be ‘‘shared’’ among the three polarimetric variable es-

timators. Each variable requires its own correlation

estimators. All in all, a real-time implementation of

OUTB estimators should be feasible with modern dig-

ital signal processing technology.

6. Simulation results

Simulated time series data are used to study the effects

of channel mismatches on the estimation of polarimetric

variables from range-oversampled data. In particular,

the results provide validation of the ‘‘unbiasing’’ scaling

presented in section 4 and show the performance of the

optimum transformations derived in section 5. Signals

are simulated as described by Torres and Zrni�c (2003a,b)

using varying degrees of mismatch between the modified

pulses of the H and V channels. The modified pulse for

the H channel serves as a reference and is fixed with

rectangular amplitude and zero phase as

p
H

(l) 5
L�1/2 0 # l , L

0 otherwise

�
: (46)

Although this pulse shape may be unrealistic for prac-

tical systems, the results that follow are equally appli-

cable to any specific pulse shape. Recall that it is the

mismatch between the H and V channels that leads to

biased correlation estimators. The modified pulse for

the V channel is varied to obtain different degrees of

mismatch as

where unitless factors a0 and b0 control constant am-

plitude and phase mismatches and unitless factors

a1 and b1 control time-varying amplitude and phase mis-

matches (pa and pb are unitless functions of range time l).

Note that perfect matching is obtained if a0 5 1 and

a1 5 b0 5 b1 5 0. For this simulation study, we consider

two types of functions for pa and pb: a linearly in-

creasing function

p
ramp

(l) 5
l

L� 1
, l 5 0, 1, . . . , L� 1 (48)

and a triangular function2

p
triang

(l) 5 1� 2

L� 1
l � L� 1

2

����
����, l 5 0, 1, . . . , L� 1.

(49)

The pattern for these mismatches is based on Choudhury

and Chandrasekar’s (2007) work on the CSU–CHILL

radar and on our observations from the National Severe

Storms Laboratory Next Generation Weather Radar

(NEXRAD) polarimetric prototype (Ivi�c et al. 2003b).

An amplitude mismatch could be due to miscalibrated

pulse-forming networks or different overall gains in

each channel. A phase mismatch might be attributed to

a known effect with klystron amplifiers. It has been

observed that these devices exhibit an AM-to-PM

conversion whereby voltage variations in the transmit-

ted pulse envelope are converted into phase variations

of the carrier (Ivi�c et al. 2003b).

Polarimetric range-oversampled weather-like data

are simulated for varying degrees of channel mismatch

to illustrate the performance of the transformations

developed in the previous sections. For each mismatch

case, 1000 realizations of time series data are generated

with the following parameters: the oversampling factor

p
V

(l) 5
[a

0
1 a

1
p

a
(l)] expfj[b

0
1 b

1
p

b
(l)]gp

H
(l) 0 # l , L

0 otherwise

(
, (47)

2 This formula is for odd L.
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L 5 5, the number of samples in the dwell time M 5 64,

the signal-to-noise ratio is very large, and the Nyquist

velocity is 32 m s21. The spectral moments are SH 5 0 dB,

y 5 0 m s21, and sv 5 4 m s21; the polarimetric variables

are ZDR 5 1 dB, FDP 5 308, and rHV 5 0.985. Range-

oversampled data are processed using four matrix

transformation sets:

1) oversampling and averaging (OAB), in which over-

sampled signals are not transformed; that is, WH,V 5
~WH,V 5 I;

2) WTB, in which the same whitening transformation (the

one for the H channel) is used disregarding channel

mismatch (section 4b); that is, WH,V 5 ~WH,V 5 H�1,

where C
VHVH

5 H*HT ;

3) UWTB, in which the proper scaling factors are ap-

plied (section 4d), WH,V are the whitening transfor-

mations for each channel, and ~WH,V diagonalize the

normalized range cross-correlation matrix CVH VV
; and

4) OUTB, in which three sets of transformations are

obtained by solving the constrained minimization

problems presented in section 5. These problems are

solved using the sequential quadratic programming

(SQP) method implemented in MATLAB function

‘‘fmincon.’’ SQP methods are best suited for solving

problems with significant nonlinearities in the con-

straints (Nocedal and Wright 2006), which is the case

in our formulation.

Table 1 shows a list of abnormally biased polarimetric

variable estimators on range-oversampled data for dif-

ferent channel mismatch cases. Case 1 is the ideal case

of matched channels in which all the estimators are

unbiased for all the transformations under consider-

ation. Cases 2, 3, and 4 correspond to a constant mis-

match in amplitude, phase, and both, respectively. Unless

mismatches are properly accounted for through unbias-

ing factors (UWTB and OUTB), amplitude mismatches

lead to an abnormal bias in ZDR and phase mismatches

lead to an abnormal bias in FDP. Note that these constant

mismatches can be corrected via ZDR and FDP calibra-

tion constants; thus, biases in these polarimetric variables

are typically of little concern. Conversely, biases in rHV

are more difficult to correct through calibration; never-

theless, in these cases rHV estimates remain normally

biased. Cases 5, 6, and 7 correspond to time-varying

mismatches of the ramp form [cf. (48)] in amplitude,

phase, and both, respectively. Finally, case 8 is similar to

case 7 but uses (49) for the time-varying amplitude mis-

match. Analogously to the previous cases, amplitude

(phase) mismatches lead to abnormally biased OAB and

WTB estimates of ZDR (FDP), which can be removed

through calibration. However, in all these cases, OAB

and WTB estimates of rHV are abnormally biased and

removal of this bias is not straightforward using calibra-

tion techniques.

Next, varying degrees of time-dependent mismatches

are evaluated. Figures 1 and 2 show the bias and stan-

dard deviation of the polarimetric variables corre-

sponding to varying degrees of phase and amplitude

mismatch, respectively. These figures show that al-

though WTB has lower standard deviation than OAB

(except for rHV estimates with phase mismatches with

b1 larger than about p/9), it produces abnormally biased

estimates of polarimetric variables as the degree of

mismatch between the H and V channels increases

(note that whereas significant ZDR biases correspond to

amplitude mismatches and FDP biases only occur for

phase mismatches, rHV biases are of practical concern in

both types of mismatches). On the other hand, UWTB

has almost the same or better variance reduction as

WTB but produces normally biased estimates irre-

spective of the degree of mismatch between the H and V

channels. Notice, however, that the standard deviations

of estimates with UWTB (and WTB) increase relative to

those of OAB as the degree of mismatch between the H

and V channels increases. Indeed, for large degrees of

TABLE 1. Summary of abnormally biased range-oversampling polarimetric variable estimators for different amplitude and phase

mismatch cases for oversampling and averaging (OAB), biased whitening (WTB), unbiased whitening (UWTB), and optimum unbiased

transformation (OUTB). The amplitude and phase mismatch parameters are those in (47), and ramp and triang. correspond to Eqs. (48)

and (49), respectively.

Case

Amplitude mismatch Phase mismatch Abnormally biased estimators

a0 a1 pa b0 b1 pb OAB WTB UWTB/OUTB

1 1.0 0 ramp 0 0 ramp — — —

2 0.8 0 ramp 0 0 ramp ZDR ZDR —

3 1.0 0 ramp p/6 0 ramp FDP FDP —

4 0.8 0 ramp p/6 0 ramp ZDR, FDP ZDR, FDP —

5 0.8 0.2 ramp 0 0 ramp ZDR, rHV ZDR, rHV —

6 1.0 0 ramp 0 p/6 ramp FDP, rHV FDP, rHV —

7 0.8 0.2 ramp 0 p/6 ramp ZDR, FDP, rHV ZDR, FDP, rHV —

8 0.8 0.2 triang. 0 p/6 ramp ZDR, FDP, rHV ZDR, FDP, rHV —
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mismatch, UWTB performs worse than OAB (in this

specific case, this is mainly observed for rHV with phase

mismatches with b1 larger than about p/9). Conversely,

in all cases, OUTB achieves maximum variance reduc-

tion of polarimetric variable estimates with minimum

bias as predicted theoretically.

7. Conclusions

This paper demonstrates that, by properly accounting

for the amplitude and/or phase differences in the

transmission channels (i.e., by properly scaling the

transformation matrices), it is always possible to obtain

unbiased polarimetric variable estimates from range-

oversampled signals. Nevertheless, as shown by the

simulations, the variance of these estimators degrades

as the degree of mismatch between the horizontally and

the vertically polarized transmitted pulses increases.

Still, by solving a constrained minimization problem,

it is possible to find transformation structures that

result in unbiased auto- and cross-correlation esti-

mates and at the same time achieve maximum variance

reduction.

Although it was shown that polarimetric channel

mismatches can be properly accounted for, the imple-

mentation of optimum unbiased estimators on range-

oversampled signals comes at a price because of the ad-

ditional complexity and computational requirements.

However, depending on the maximum acceptable polar-

imetric variable biases, the conventional use of whiten-

ing transformations may still be possible on systems with

small channel mismatches; that is, assuming that ZDR and

FDP biases can be effectively removed through calibration

procedures, the maximum acceptable rHV bias can be

used to determine the worst channel mismatch conditions

for which a whitening transformation is still viable (e.g.,

for the cases depicted in Figs. 1, 2, a maximum acceptable

rHV bias of 0.01 would result in whitening being appli-

cable for amplitude mismatches less than about 0.175 or

phase mismatches less than about p/12). However, on

systems with significant channel mismatches, one might

be forced to implement the more-involved optimum

unbiased estimators. Fortunately, on polarization-diverse

single-transmitter radar systems, such as the planned

upgrades of the NEXRAD network (Doviak et al. 2000),

significant channel mismatches are not likely to occur.

FIG. 1. (left) Bias and (right) standard deviation of polarimetric variable estimates for oversampled

data processed using OAB, WTB, UWTB, and OUTB. In addition, the biases of estimates for standard

processing (non-oversampled data) without calibration are included as a reference. The H and V channels

exhibit a linearly increasing phase mismatch with zero initial phase (b0 5 0) and maximum departure (b1)

varying from 0 to p/6.
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APPENDIX

Bias of Polarimetric Variable Estimators

Throughout this paper, it is assumed that unbiased

correlation estimates are required to preserve the in-

tegrity of the polarimetric variables; this condition mo-

tivates the focus on correlation estimates in section 2

and is used as a constraint to the minimization problem

in section 5. However, polarimetric variable estimators

are nonlinear functions of auto- and cross-correlation

estimates; thus, unbiased correlation estimates do not

necessarily lead to unbiased ZDR, rHV, and FDP esti-

mates. In fact, polarimetric variable estimators are in-

herently biased (or normally biased), as shown by

Melnikov and Zrni�c (2004). Nevertheless, a condition to

ensure that biases of polarimetric variables obtained

from range-oversampled signals are not any larger than

those obtained with standard processing (no over-

sampling) is that correlation estimators based on range-

oversampled signals be unbiased. This is shown next.

Consider a generic estimator ŷ derived as a func-

tion of n primary estimators: x̂
1
, x̂

2
, . . . , x̂

n
; that is,

ŷ 5 g(x̂
1
, x̂

2
, . . . , x̂

n
), where g is any function. Accord-

ing to Papoulis (1984), if g is sufficiently smooth near the

point (E[x̂
1
], E[x̂

2
], . . . , E[x̂

n
]), the expected value of the

derived estimator can be approximated as

E[ ŷ] ’ g 1
1

2
�

n

i51
�

n

j51

›2g

›x̂
i
›x̂

j

Cov[x̂
i
, x̂

j
], (A1)

where g and its derivatives are evaluated at (E[x̂1],

E[x̂2], . . . , E[x̂n]) and Cov is the covariance operator.

Note that if g is a linear function, the terms from the

FIG. 2. Bias (left) and standard deviation (right) of polarimetric variable estimates for oversampled

data processed using: (1) oversampling and averaging (OAB), (2) biased whitening (WTB), (3) unbiased

whitening (UWTB), and (4) optimum unbiased transformation (OUTB). In addition, the biases of es-

timates for standard processing (non-oversampled data) without calibration are included as a reference.

The H and V channels exhibit a progressively increasing amplitude mismatch with a1 varying from 0 to 0.2

and a0 1 a1 5 1.
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double sum vanish because the second derivatives of a

linear function are zero.

Based on (A1), the bias of the derived estimator given

by Bias[ ŷ] 5 E[ ŷ]� y can be approximated as

Bias[ ŷ] ’ g(E[x̂
1
], . . . , E[x̂

n
])� g(x

1
, . . . , x

n
)

1
1

2
�

n

i51
�

n

j51

›2g

›x̂
i
›x̂

j

Cov[x̂
i
, x̂

j
]. (A2)

Hence, the bias of the derived estimator depends not

only on the biases of the primary estimators but also on

their covariances. Note that if the primary estimators

are unbiased [i.e., E[x̂i] 5 xi (i 5 1, . . . , n)], the bias of

the derived estimator depends only on the covariance

terms; that is,

Bias[ ŷ] ’
1

2
�

n

i51
�

n

j51

›2g

›x̂
i
›x̂

j

Cov[x̂
i
, x̂

j
] (A3)

because

g(E[x̂
1
], . . . , E[x̂

n
]) 5 g(x

1
, . . . , x

n
), (A4)

and the magnitude of the bias is bounded as

Bias[ ŷ]j j# 1

2
�

n

i51
�

n

j51

›2g

›x̂
i
›x̂

j

�����
�����fVar[x̂

i
]Var[x̂

j
]g1/2, (A5)

where we used the fact that jCov[x̂
i
,x̂

j
]j#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var[x̂i]Var[x̂j]

q
.

Polarimetric variable estimators are derived from

correlation estimators (i.e., the primary estimators)

as ẐDR 5 g1(R̂
(T)

XH XH
,R̂

(T)
XV XV

), F̂DP 5g2(R̂
(T)

XHXV
), and

r̂HV 5 g3(R̂
(T)

XHXH
,R̂

(T)
XV XV

,R̂
(T)
XHXV

), where g1, g2, and g3

are nonlinear complex functions. For these estimators,

based on transformed oversampled signals, the vari-

ances in (A5) can be computed using (33) as

Var[R̂
(T)

X
Y

X
Z
] 5 RX

Y
X

Y
R

X
Z

X
Z

*
1

L2
tr(C

X
Y

X
Y
CX

Z
X

Z
), (A6)

where subscripts Y and Z can be either H or V.

Next, let us compare the biases of estimators based on

standard processing with no oversampling to those

based on transformed oversampled signals. The mag-

nitude of the biases can be estimated using (A5) for

both classes of estimators, where the only difference

between these two types of estimators is in the factors of

the form tr(CX
Y

X
Y
CX

Z
X

Z
)/L2 that originate from using

(A6) in (A5). On one hand, for estimators based on stan-

dard processing, these factors are always equal to 1 (be-

cause L 5 1 and the normalized range correlation matrices

reduce to scalars; i.e., C
XY XY

5 CXZXZ
5 1). On the other

hand, for estimators based on transformed oversampled

signals, these factors are at most 1; that is,

1

L2
tr(C

X
Y

X
Y
CX

Z
X

Z
) #

1

L2
tr(C

X
Y

X
Y

)tr(C
X

Z
X

Z
) 5 1,

(A7)

which follows because the matrices inside the trace are

positive semidefinite (they are autocorrelation matri-

ces) and are constrained for unbiased correlation esti-

mators as in (31).

In summary, provided that correlation estimates are

unbiased, the biases of polarimetric variable estima-

tors based on transformed oversampled signals are

never larger than those of estimators based on standard

processing.
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