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Abstract— In this work, an automatic wind turbine identifica-
tion scheme was developed, with a restriction that only Level-II
data are available. The motivation is to minimize modification to
the existing data processing infrastructure of the WSR-88D. The
concept is to process several consecutive scans of images and look
for features that move. This was accomplished by processing a
set of six running-temporal textures, which are derived from the
moment data, to find temporal continuity. A fuzzy logic inference
system is used to combine information from the six textures to
make a final decision of detection. Preliminary results will be
presented to demonstrate the potential of this algorithm.

I. INTRODUCTION

Wind power is considered a “green” form of electricity
production as it is renewable and ecologically friendly. While
there are countless benefits from its growth, the negative im-
pacts should not be neglected. One such impact is the negative
impacts on radar data quality and, thus, the performance of
many radar algorithms [1], [2]. Studies have shown that wind
farms located in close range could severely impact warning
decision making [3]. Within the realm of weather radars, there
is work focused on mitigating the wind turbine interference
using time-series data, e.g., [4]–[6]. This work represents an
attempt to accomplish identification with only Level-II data
(i.e., reflectivity, Doppler velocity and spectrum width).

In this work, an algorithm for automatic wind turbine
identification (AWTI) using Level-II data was developed.
The algorithm utilizes a series of consecutive moment maps
and a Fuzzy-logic Inference System (FIS) for identification.
The impetus for this project is to design and realize an
identification technique that requires minimal modifications
to the existing WSR-88D infrastructure. Often times, a wind
farm within the radar domain can be visually identified from
Level-II data by inspecting several consecutive images and
looking for stationary features. Most weather features advect
and deform but features from ground targets, wind turbine
included, would remain at the same locations and provide
us with visual queues for identification. Current operational
ground clutter filter, i.e., Gaussian Model Adaptive Processing
(GMAP, [7]), does not completely filter wind turbine clutter
simply because it is not designed to do so. Even other clutter

filters are meant for filtering targets at near-zero velocity.
Residual signals from the wind turbine clutter through these
ground clutter filters still contaminate meteorological data and
it is the primary goal of this work to design, implement and test
of an automatic identification technique to identify the residual
wind turbine clutter signals using Level-II data. We focus on
areas where GMAP has been applied, i.e., areas where the
Clutter Mitigation Decision (CMD, [8]) flag is positive, which
would otherwise be considered no ground target interference.

In the paper, a detailed description of the algorithm and
some examples from several WSR-88D radars, i.e., KDDC,
KDYX, KBUF, etc., will be presented. Of course, moment
dataset with the highest temporal resolution of 5-minute would
limit the performance of the algorithm and they will be
discussed.

II. AUTOMATIC WIND TURBINE IDENTIFICATION

As mentioned earlier, if a wind farm is still present within
the radar domain after GMAP filtering, it can be visually
identified from Level-II data when one observes several con-
secutive images and look for visual queues to locate stationary
targets versus moving targets. In the scope of this work,
they correspond to the residual wind turbine clutter signals
(from GMAP filter) versus the weather echoes, respectively.
Understanding how human visual systems identify these resid-
ual signals of wind turbine clutter, it was believed that by
processing several consecutive images at a time, a similar
detection could be realized for computer implementation.

Such an algorithm has been developed using the CMD flag,
six running-temporal textures, which are numerical statistics of
the moment values, and an FIS for the identification. Figure 1
shows a block diagram that illustrates the data flow of the
processing. In the rest of this paper, the detailed description
of the algorithm and some examples from WSR-88D radars
will be shown.

A. Textures

Six running-temporal textures are considered in the AWTI
algorithm. In the present implementation, a set of seven
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Fig. 1. Block diagram of the AWTI procedure.

(arbitrary, user changeable) images is considered at each
time level. Out of these seven images, temporal average,
correlations of up to lag five (flexible) and the resulting
variance are considered. The six textures are (1) average of
reflectivity, (2) average of velocity, (3) average of spectrum
width, (4) correlation of reflectivity, (5) variance of velocity,
and (6) correlation of spectrum width.

1) Average of reflectivity: The average of reflectivity can
be considered as a blur composite of the images. For features
that are non-stationary, such as the isolated storm cells, this
texture will be smeared. On the other hand, for features that
are stationary, such as the wind turbine clutter, they will be
summed consistently and thus result in strong reflectivity for
those regions. The texture is mathematically described as

Zm(t) =
1
N

N−1∑
n=0

Z(t− n), (1)

where Z(t−n) represents the reflectivity at time (t−n). The
range of the sum is performed with N scans.

2) Average of velocity: The average of radial velocity has
been found to be near zero when sufficient images are used
for averaging, which is exactly opposite of the signatures
found in typical weather signals, except in regions along the
zero isodop. It should be mentioned here that calculating the
average of velocity should avoid abrupt value change when
velocity values are near the aliasing velocity. For example, two
values that are close to +va and −va should have an average
of near ±va, instead of zero. For simplicity, the mathematical
description as follows

vm(t) =
1
N

N−1∑
n=0

v(t− n), (2)

where v represents the Doppler velocity.
3) Average of spectrum width: The average of spectrum

width is high for wind turbine targets because it represents
the collective spectrum of a widely distributed velocity, which

comes from different parts of the blades that exhibit different
velocities. Of course, regions with weather may also exhibit
wide spectrum width when the air motion is turbulent. If
the weather pattern is scattered and has sufficient motion,
however, this feature will be blurred similarly to the average
of reflectivity. The texture is described mathematically as

wm(t) =
1
N

N−1∑
n=0

w(t− n), (3)

where w represents the spectrum width.
4) Correlation of reflectivity: The correlation of reflectivity

is expected to be high for stationary targets and low for moving
targets. This is the texture that closely mimics our visual
system to lock on features that are stationary, which is, in the
interest of this project, the wind turbine clutter. Of course, a
situation with stratiform precipitation would also result in high
correlation values, as the whole map appears stationary. An
important challenge to this statistical variable is the selection
of a proper lag value and the number of scans to use for
calculation. In our experience, the median of τ = 1, . . . , 5
(L = 5) yields a texture that can sufficiently identified regions
that are stationary from moving weather. This texture also
opens up many other possibilities in combining the correlation
of reflectivity from different lags, such as the minimum, the
spread between the maximum and minimum, or even the
gradient of the correlation as lag increases, just to name a
few. Nonetheless, in the present stage, the median of the lags
is chosen for simplicity. The texture is described as

RZ = MED

{
N−1∑
n=0

[Z(n)− Zm][Z(n− τ)− Zm]

}L

τ=1

,

(4)
where τ represents the lag number.

5) Variance of velocity: The variance of velocity is high
as the velocity being measured directly depends on the blade
orientation, which appears random from one scan to another.
Conversely, for the weather signals, this measurement would
typically be low except for regions that are extremely turbu-
lent. Again, in the process of computing variance of velocity,
care must be taken in order avoid summing abrupt changes in
velocities near the maximum unambiguous velocity. That is,
for two values that are close to +va and −va, should yield a
small number, rather than 2va. The texture is described as

Vv =
N−1∑
n=0

[v(n)− vm]2 . (5)

6) Correlation of spectrum width: The correlation of spec-
trum width is similar to the correlation of reflectivity. The
pattern of a storm usually changes, i.e., the spatial pattern of
the storm translates and deforms across the radar domain. It is
no surprise that the pattern of spectrum width also behaves in
a similar way much like the translation of reflectivity structure.
Distinctively, wind turbine clutter also exhibits high values in
this texture but they would stay on the same location, which
is advantageous for the success of identification. Similar to



the reflectivity, the correlation factors of up to several lags
are evaluated but a median value is chosen for the subsequent
processing. The texture is described as

Rw = MED

[
N−1∑
n=0

w(n)w(n− τ)

]L
τ=1

. (6)

Each of the six textures can itself be used for the identifica-
tion process. However, as discussed earlier, there are situations
when one texture alone would produce a high rate of false
identification. By combining all of them in some optimal
sense, the hope is that one poorly represented texture that could
fail due to exceptional conditions or poor measurements can
be compensated by the other textures that are less affected by
such situations. A simple score counting of the decision from
each texture can be used, but an FIS was chosen for its modest
complexity and its superiority with respect to threshold-based
methods.

B. Fuzzy Logic Inference System

An FIS is used to facilitate the combination of the running-
temporal textures for the wind turbine clutter identification.
Compared to the traditional if-else decision tree or threshold-
based approach, the fuzzy-logic approach provides room for
errors and conflicts from the multiple input variables. In the
case of wind turbine identification using multiple textures,
exceptions to false detection from a single texture (e.g., zero
isodop for wind turbine clutter) can be compensated by other
textures that would classify the signals otherwise.

MATLB has a robust implementation of FIS in its Fuzzy
Logic Toolbox and is used in this project. In the FIS setup,
two membership functions are assigned to each texture for
classifying the wind turbine clutter from the other radar
signals. The strengths of classification from each membership
function are then combined together to produce a single output
value between 0 and 1 indicating the degree of detection of
wind turbine clutter for that particular feature.

III. PRELIMINARY RESULTS

Results presented in this section are processed using seven
consecutive scans for texture calculation. The cases are col-
lected using VCP21 [9], so seven consecutive scans represent
approximately 35 minutes.

A dataset from the WSR-88D radar in Dodge City, Kansas
(KDDC) on 13 Oct 2009 12:00–23:59 UTC was used for
the algorithm development and initial tests. In this dataset,
scattered precipitation passes through the radar domain from
the southwest. The storm intensifies and eventually passes
through the two wind farms within the radar domain, one
located approximately 40 km southwest while the other lies
25 km northeast of the radar. This dataset provides test signals
to evaluate the algorithm both at times when the storm is
completely outside the wind farms as well as when the storm
overlaps with the wind farms.

An example snapshot from the KDDC is shown in Fig. 2,
illustrating promising potential in separating the wind turbine

Fig. 2. Two wind farms, one located 40 km southwest while the other lies
25 km northeast of the KDDC radar site were successfully identified. Note the
similar values in reflectivity, velocity and spectrum width for the precipitation
at the southwestern region that would be nearly impossible to identify without
a temporal history of data.

Fig. 3. Several wind farms southeast of the radar have been detected using
the proposed AWTI algorithm.

clutter from the weather signals. In this figure, standard
moments of reflectivity (Z), velocity (v) and spectrum width
(w) are shown in the first column from the left; the textures
referred to as the average of reflectivity (Zm), average of
velocity (vm) and average of spectrum width (wm) are shown
in the second column; correlation of reflectivity (RZ), variance
of velocity (Vv) and correlation of spectrum width (Rw) are
shown in the third column; finally, the output of the FIS is
shown in the right-most panel, where the output is a value
between 0 and 1 indicating certain degree of confidence.
Yellow shades indicate identifications (values > 0.5) of wind
turbine clutter. Note that the coverage of textures is smaller
because they are shown only at regions where the GMAP
filter has been applied, which are the primary areas of focus
in this project. If a single scan is presented to a user, it is
nearly impossible to separate the wind turbine clutter from
the weather signals.

Dataset from Buffalo, New York (KBUF) on 1 May 2010
13:00-23:59 UTC was used in the analysis where scattered
precipitation moved across the radar domain from the west. A
snapshot of the AWTI results is presented in Fig. 2, showing
the detection of wind farms at approximately 40-50 km range
southeast of the radar. As expected, the AWTI algorithm was
able to separate the precipitation echoes from the wind turbine
clutter.



Fig. 4. The wind farm just west of the KDYX radar was detected. Streak-like
echoes are due to multipath propagation but the texture signatures of the wind
turbine clutter do not change, which make the detection viable.

Another radar site with significant wind turbine interference
is the Dyeses Airforce Base, Texas (KDYX). A dataset on
05/24/2010 00:00-04:00 UTC when non-precipitation radar
returns were found within the radar domain. The dataset was
collected during the evening when strong insect returns were
evident. A snapshot at 03:03 UTC is shown in Figure 4 where
a wind farm just west of the radar was identified by the AWTI
algorithm. Streak-like echoes of the wind farm are due to the
multipath propagation (MP). Nonetheless, the signatures of
wind turbine clutter stay intact through the MP and, thus, are
successfully detected by the algorithm.

IV. LIMITATIONS

The algorithm uses modest computational resources in both
CPU time and memory usage since only moment products
from the lowest tilt are needed. A real-time implementation
is possible on a dedicated workstation but may be limited on
a shared workstation depending on how much resources are
available. There are two major limitations of the technique,
which are the texture representation and FIS configuration.
They will be discussed as follows.

A. Texture Representation

In the operational data stream, aliased velocity is not un-
common when a lower PRF is applied. The aliased velocities
would result in poor representations of textures vm and Vv .
In addition, lower PRFs are usually accompanied with lower
number of pulses per radial, which introduces a positive
bias on wm, and, thus, Rw. This would cause four out of
six textures to be misrepresented and subsequently produce
false detections. Figure 5 shows one such example during a
VCP32 scan from KBUF where a tremendous amount of false
detections can be seen due to the poor texture values.

Since the core of the algorithm is temporal processing,
handling several images at a time also means a long period of
observation, which might not be optimum for rapid evolving
atmospheric conditions, particularly detections due to anoma-
lous propagation (AP). In theory, the texture signatures of wind
turbine clutter are preserved through AP and MP (example
in Figure 3). The atmospheric conditions that cause the AP
and/or MP, however, might not last for that long especially

Fig. 5. Low PRF that causes velocity measurements to alias and induces
positive bias on the spectrum width estimate could consequently cause large
amount of false detections.

when several consecutive scans are needed for detections. On
the other hand, for low number of scans, the quality of textures
may not be sound. The weather pattern may not have sufficient
motions for the algorithm to capture the de-correlation of the
features.

B. FIS Configuration

Up until now, all the results presented are produced using
a fixed FIS configuration. The membership functions are
optimized using an ad-hoc methodology, which has yet to be
numerically quantified. An adaptive fuzzy-logic approach may
be desired in which the FIS can be trained or adapted to a
particular radar site or weather phenomena. Whether such an
approach is necessary is still an open question until a more
thorough study is conducted using large quantity of dataset.
An example to illustrate that argument is presented in Figure 6
where a dataset from KBUF on 06/25/2009 23:42:00 UTC
is used. In this example, a squall line passed by the radar
domain and caused significant amount of false detection using
the preliminary FIS setup. Note the area of false detection
outlined in the top panel. The false detection is no surprise
when one take a closer look at the six textures that were
used in the AWTI algorithm. The squall line exhibits many
signatures of wind turbine clutter as we defined them, i.e.,
high Zm, near zero vm, high RZ and (arguably) high Vv. A
successful identification could be achieved by increasing the
weight on wm and Rw. The result of such tuning is shown in
the bottom panel of Figure 6.

To realize a globally optimum FIS configuration is an
extremely challenging and tedious task. Working closely with
the NOAA Radar Operations Center, we are investigating and
assessing this possibility.

V. CONCLUSIONS

In this project, a fundamental algorithm has been built
for AWTI using Level-II data. Six running-temporal textures
were developed and an FIS was implemented on a MATLAB
platform to evaluate the potentials for automated detection.
Initial investigation has shown promising results in detection
of wind turbine clutter using Level-II data. A more thorough
evaluation is currently underway to assess and fine tune the



Fig. 6. A global optimum FIS configuration has yet to be realized. Situations
where turbulent storms are present could cause false detection, as shown in
the top panel, due to the similar signatures of turbulent echoes compared to
the definition of wind turbine clutter in our current FIS configuration. By
turning the membership functions, a successful detection is still possible as
shown in the bottom panel of the figure.

performance of the AWTI algorithm with more data cases from
the NEXRAD network.

Present work only utilizes moment data for the texture
generation. There are more possibilities if Level-I I/Q data
were used to generate additional textures. Within OU-ARRC,
previous work on wind turbine detection using time-series data
has shown potential in indentifying wind turbine clutter from
a single scan (Hood et al., 2010). We believe the combination
of Level-I and Level-II could hold the most potential for an
optimal detection algorithm. For example, it can be used to
complement the situations of false detections using Level II
data, or perhaps detection during AP and MP.

As discussed earlier, the temporal correlation textures can
be expanded since there are a few other possibilities of
combining the correlation factors from different lags, which
may potentially improve the detection.

In the near future, the WSR-88D radars are to be upgraded
with dual-polarization capabilities. Newly available polarimet-
ric variables may potentially be a significant enhancement
to the algorithm for detection, especially products that are
independent of the PRF, i.e., they do not suffer aliasing
limitation like velocity. As wind turbines are rigid and do not
fill in the entire resolution volume, the signatures of wind
turbine clutter are predicted to be significantly distinct from
the weather signals. Differential reflectivity should fluctuate
randomly from one scan to another given the random blade
orientations; polarimetric correlation may be low depending on

how the wind turbines react to each other within the volume;
and, differential phase should in theory be random since the
targets do not look the same from one scan to another. These
distinct signatures, if found to be as expected, would enhance
the detection.
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