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1. INTRODUCTION 

Proper censoring of data on the National Weather 
Surveillance Radar – 1988 Doppler (i.e., WSR-88D) is 
essential for the forecasters and automated algorithms. 
Presently, spectral moments at each range location are 
censored (i.e., labeled not useful) if the Signal-to-Noise 
Ratio (SNR) is insufficient, or the echoes from the 
subsequent trips are overlaid. Current censoring uses 
power measurements to determine if the SNR is above 
predetermined threshold relative to the noise power 
(typically 2 dB for reflectivity, and 3.5 dB for velocity 
measurements). In addition to SNR, Doppler radar 
offers coherency (i.e., autocorrelation) measurement in 
sample-time as a variable suitable for censoring (Keeler 
1990, SIGMET 2006). It is likely that using the 
combination of the two measurements one can design a 
detection scheme that improves the detection rate as 
opposed to using either of these two measurements 
separately; thus, effectively increasing the sensitivity of 
the radar. In this paper such possibility is investigated. 

2. COHERENCY BASED DETECTION 

 The main idea of the approach investigated in this 
work is to utilize the weather signal coherency in 
sample-time to improve its detection. Each approach 
essentially consists of comparing the output of some 
function of the time series data (i.e., f(V) where V = 
[V(0,τs),…, V(M-1,τs)]T) against a threshold to decide if 
significant signal is present at range location given by τs. 
Complex random variables V(m,τs) are obtained by 
sampling voltage echoes at times mT (where T is the 
Pulse Repetition Time or PRT). Clearly, these samples 
can be combined in many ways to obtain the function f. 
However, a good combination is defined by the one that 
can emphasize signal features in white Gaussian noise. 
For example, the measured power is the sum of signal 
and noise powers, thus the total power reflects the 
notion that its estimate is higher if a signal is present. 
Moreover, the autocorrelation function of white noise at 
lags other than zero is zero but increases if signal is 
present. Hence, the autocorrelation coefficient estimate 
is a measure of the coherency in sample-time. 
Consequently, it seems reasonable that we formulate 
function f as a sum of the powers and the 
autocorrelation estimates. This has an added 
convenience since the calculation of these functions is 
needed for generating spectral moments and the 
computational impact on existing resources is thus 
minimal. 

 

 The general form of the weighted sum is 
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and the THR is the threshold set so that the preset rate 
of false detections is not exceeded. The weight α 
provides the degree of freedom to optimize the rate of 
detection (i.e., probability of detection or POD) for a 
particular application. This can be done by setting α to 
maximize POD given specific values of signal 
parameters. Generally, the expected value of the power 
estimate is the sum of the signal and noise powers. In 
the case of the weather signal, the modulus of the 
autocorrelation is (Doviak and Zrnić 1993) 
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where σv is the signal spectrum width, and va is the 
unambiguous velocity. The ratio of these two σvn=σv/va 
is the normalized spectrum width. Clearly, when only the 
white Gaussian noise is present, we can assume that 
σvn → ∞ and the contribution of the autocorrelation 
estimate to the WS is fairly small. This contribution is 
inversely proportional to the number of samples M 
because (Ivić 2009): 
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where N is the noise power. Thus, the shape of the WS 
pdf depends only on the number of samples M and the 
weight α. When signal and noise are present the 
parameters that determine the probability density 
function (i.e., pdf) shape are M, α, the SNR, and σvn. 
Given specific values of all these parameters (except α) 
the optimal weight is the one that minimizes the portion 
of the pdf that falls under the threshold (thus maximizing 
the POD). Thus, for any threshold value, we want the 
weight that minimizes the overlap between the pdf’s of 
noise and signal+noise. By varying the weight value one 
changes both the mean value and the spread of the WS 
pdf. Because the mean of the autocorrelation estimate 
modulus is higher when signal is present the difference 
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in the means of the noise and signal+noise pdf’s is 
directly proportional to the value of α. The farther apart 
these two means are the less overlap should occur 
between the two pdf’s. On the other hand, the larger the 
weight, the more spread are the pdf’s which has the 
potential to increase the overlap. These two opposing 
effects need to be balanced by the proper choice of the 
weight. As shown in Ivić (2009), the SNR has no 
bearing on the choice of the weight. This is so because 
given the specific value of σvn, the same value of α 
maximizes the POD at all SNR levels. Naturally, the 
POD is directly proportional to the SNR. As for the 
number of samples M, the spread of the pdf when noise 
or signal+noise are present is inversely proportional to 
it, whereas the mean stays the same. At the same time, 
the performance of the sum degrades as the difference 
between the normalized spectrum width of samples in V 
and the σvn value that the sum is optimized for grows 
larger. We can, however, attempt to find a value of σvn 
for which to optimize the weighted sum that would 
minimize this performance degradation. We speculate 
that such value is its median. Fang et al. (2004) show 
that 2 m s-1 is the median of σv for most weather events 
of interest; thus, we would like to adjust the α weight 
accordingly. Another possible approach would be to find 
such a combination of weights that would produce 
relatively balanced detection rate for a wide range of 
signal parameters of interest. 

3. WEIGHT OPTIMIZATION 

Let us now analyze the approach needed to find the 
weight α given the value of σvn and the desired PFA. 
The most straightforward way to achieve this would be, 
of course, to find the weighted sum pdf in a closed form 
which would be a function of signal parameters as well 
as the weight. Assuming we are able to do this we 
would essentially have two functions. One would be the 
weighted sum pdf when only noise is present and the 
other one when both signal+noise are present. The first 
we shall denote as f(WSN) and the latter one as 
f(WSS+N), where the WSN and WSS+N are random 
variables that equal the weighted sum when only noise 
and both signal and noise are present, respectively. 
Notice that both functions are designated with the same 
letter and the difference is in the subscript of the random 
variable that is the function input. This is done purposely 
because these two functions, in their general form, are 
the same except that when only noise is present we set 
SNR = -∞ dB, and σvn = ∞ m s-1. Now we can define our 
goal as: 
 Find a value for the weight α such that: 
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where ε is the desired PFA, and THR is the threshold. 

Clearly, both WSN and WSS+N are functions of elements 
of the observations vector V = [V(0), …,V(M-1)]T. Hence, 
we are dealing with the transformation of a random 
variable and to derive f we would need to start with the 
joint pdf for the elements of V (Miller 1969): 

( ) ( )π − − −= −1det expMpdf 1HV C V C V ,  (6) 

where C is the covariance matrix of size M×M defined 
as: 

{ }= E HC VV .    (7) 

Brief examination of the involved functions reveals that 
a closed form solution is not possible. All is not lost 
however. Given the exact expression for joint pdf’s 
using (5) we can state the goal as: 

 Find values for the weight α such that: 
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where ε is the desired PFA, and THR is the threshold. 

The condition WSS+N
 α ≥ THR corresponds to the region 

in the M dimensional sample space for which the 
weighted sum is greater than the threshold when signal 
and noise are present. The condition WSN

α ≥ THR 
corresponds to the region in M dimensional sample 
space for which the weighted sum is greater than the 
threshold when only noise is present. Thus, we desire to 
maximize the region WSS+N

 α ≥ THR while keeping the 
region WSN

α ≥ THR constant. Short of the ability to 
derive the pdf analytically we resort to approximate 
methods. 
 The first that comes to mind is the plain Hit or Miss 
Monte Carlo simulation method. Let us analyze what 
steps we would have to perform to adjust the weight. 
Clearly, to find the optimal set of weights using 
simulation one would need to inspect the resulting rate 
of detection for large number of weight combinations 
and choose the one having the highest and/or the most 
balanced POD. Because the detection rates being 
estimated are on the order of ~10-1, for a known weight 
and a given threshold, a POD evaluation does not 
require huge number of trials to achieve the desired 
accuracy; hence, it can be done quickly using the plain 
Monte Carlo approach. Yet, before estimating POD, an 
appropriate threshold value that preserves the desired 
probability of false alarm (PFA) must be found. So far, 



the only tool we have at our disposal is the plain Monte 
Carlo. Due to the low values of the desired PFA (on the 
order of 10-5 to 10-6), evaluating each candidate THR 
value requires large number of trials because the pdf is 
being evaluated at its tail; thus, making it 
computationally impractical if numerous thresholds are 
to be considered. Consequently, it becomes imperative 
to introduce an optimization that will reduce the number 
of trials required to achieve the desired accuracy. When 
simulating the occurrence of random rare events (as this 
is clearly the case) the simulation technique known as 
Importance Sampling (IS) has the potential to 
dramatically reduce the number of trials required to 
meet the accuracy requirements (Mitchell 1981). For the 
problem at hand the IS technique known as the Cross-
Entropy (CE) method described in de Boer et al. (2005) 
is used. Detailed explanations of the derivations which 
customize the CE technique are beyond the scope of 
this paper. Interested readers can find similar derivation 
but for the dual-polarized case in Ivić (2009). The final 
product that follows the algorithm 3.1 in de Boer et al. 
(2005) is presented below: 

1) Define  for m = 1,…, M. Set t = 1 

(iteration = level counter) 

( )0N̂ m N=

2) Generate a sample V1, …, VK  from the density: 
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Calculate WS(Vi) for all and sort them in ascending 

order. Compute the sample (1-ρ)-quantile  of the 

performance according to , 

provided  is less than THR. Otherwise set  = 

THR. 
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3) Use the same sample V1, …, VK to solve the 

stochastic equation as given by. 
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Denote the solution by . ˆ
tN

4) If  < THR, set t = t+1 and reiterate from step 2) else 

proceed with step 5. 

t̂T

5) Estimate the PFA using: 
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The above algorithm provides an efficient avenue for 
obtaining the PFA given a threshold value. However, we 
are dealing with reversed case where we have the 
desired PFA and we aim to find the corresponding 
threshold. With the tools available so far, the process for 
threshold finding is as follows: 
1. Choose initial threshold arbitrarily. 

2. Estimate the corresponding PFA. 

3. If the estimated PFA is within the acceptable range of 

the desired one, accept the threshold. If the estimated 

PFA  is greater than the desired one, increase the 

threshold by some small value Δ, and go back to step 

2. In case, the estimated PFA is smaller than the 

desired one decrease the threshold by some small 

value Δ, and go back to step 2. 

Hopefully the above algorithm would work reliably, but 
even with the optimization techniques introduced, it 
could still prove very time consuming because the 
further the initial threshold is from the final one, the 
longer it will take for the process to converge. It is 
apparent that it would be particularly helpful if we could 
find some rough approximation to the pdf in a closed 
form. This approximation would be used to choose the 
initial threshold which would be then used as a starting 
point for the iterative process. 

We choose the generalized gamma distribution 
(Stacy 1962), as the approximation function and the first 
three moments as the matching criteria.  This model 
function is: 
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The fitting is performed by finding the parameters a, p, 
and q so that the first three moments of the 
approximation are the same as the ones estimated 
using 
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The procedure for finding the parameters of the 
generalized gamma distribution is described in Ivić 
(2009). The initial threshold calculation using the 
approximation as well as an iterative scheme to find the 
true threshold value is given in Ivić (2009). The THR 
found for the unity noise power is adjusted by simply 
multiplying it by the measured system N. 
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Figure 1. POD of the function P+α|R(T)| versus the 
value of the weight α and σvn for the signal spectrum 

widths of 2 (a), 3 (b), and 4 (c) m s-1, in case  
when M is 17, and SNR is 2 dB. 

Using the tools described, a comprehensive 
analysis was performed to establish how the POD 
behaves as function of signal parameters Figure 1 
shows the color plot of the POD as function of α and the 
σvn. The range of normalized σv values is obtained by 
taking the following unambiguous velocities: 8.92, 12.4, 
17.85, 23.76, 28.1, 30.36, 32.75, and 35.55 m s-1; and 
dividing them by the σv of 2, 3 and 4 m s-1 to obtain 
Figure 1 (a), (b) and (c). The unambiguous velocities 
correspond to the operational values used in the 
NEXRAD network. 

We notice that for all three settings of σv, the POD 
is directly proportional to the σvn for the weight values up 
to about 0.3. This can be because the power estimate 
dominates and its variance is directly proportional to the 
normalized spectrum width. Hence, as σvn increases,  
the spread of the weighted sum pdf decreases 
effectively diminishing the area that falls below the 
threshold and vice versa. At the same time though, the 
increase in the expected value of the WS, as the σvn 
decreases, is not large enough to outdo the spread 
increase in the pdf; hence, the POD reduces with σvn. 
Clearly, the latter effect (i.e., mean increase) is more 
pronounced with larger weight values. For the weights 
larger than 0.3 the maximum POD appears to be 
achieved at σvn around 0.15 for all weight values. The 
maximum value, however, is not the same for all. For 
instance, in Figure 1 (a) the maximum obtained for α of 
0.5 is smaller than the one at 1. Both maxima occur 
between σvn values of 0.12 and 0.16. Similar trends are 
observed in Figure 1 (b) and (c) as well. In general it 
appears that the weight value at which maximum 
occurs, for each σvn, increases as the normalized 
spectrum width decreases. This is logical because as 
the signals become more coherent, it makes sense to 
accentuate the coherency measurement (i.e., 
autocorrelation). At the same time, increasing α beyond 
certain value appears to have negative effect on the 
detection rate. One can speculate that this occurs when 
an increase in the spread of the pdf’s becomes more 
prominent than the mean separation; thus, the further 
weight increase only augments the overlap between the 
noise and the signal+noise pdf’s. 

Figure 1 (a) shows that setting α to unity ought to 
give satisfactory results in case we desire to optimize 
the POD for the σv of 2 m s-1. On the other hand, if the 
weighted sum is to be optimized for the detection of 
signals with spectrum widths of 3 m s-1, the 
autocorrelation estimate should be weighted down by 
about half (i.e., 0.5) for smaller va (i.e., larger σvn) but 
increased back to unity for higher va values. The same 
trend is observed in Figure 1 (c) for the signal σv of 4 m 
s-1. In Figure 2 the POD behavior for the σvn values near 
0.15 for several weights is shown. Notice that the 
performance does not change significantly for α larger 
than one. Also, given the system unambiguous velocity 
the maximum POD occurs at spectrum widths of 
va×max(σvn) (where max(σvn) is the σvn value for which 
the maximum POD occurs). From Figure 2 the max(σvn) 
is approximately 0.18 for the 0.5 weight and 0.15 for 
others. For instance, if va is 8.92 m s-1 and the weight is 



0.5 or 1 the best detection is achieved for signals with 
spectrum widths of 1.6 or 1.34 m s-1, respectively. If va is 
35 m s-1 the weighted sum detects best the signals with 
spectrum widths of 6.3 or 5.25 m s-1. 
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Figure 2.  POD of the function P+α|R(T)| versus σvn for 

several values of the weight α, in case  
when M is 17, and SNR is 2 dB. 

It is desirable to optimize the overall POD over the 
range of signal spectrum widths that are of 
meteorological interest. Thus, another aspect to 
consider is the detection rate dependence on the 
spectrum width. This is presented in Figure 3. In both 
cases when α is 1 and 0.5 we notice that the POD 
maxima shift towards higher spectrum widths as va 
increases. This is so because the product va×max(σvn) 
increases. Also, we notice that for each va after the POD 
reaches maximum it starts decreasing as the signal 
spectrum width increases further. This happens 
because the spread of the weighted sum pdf becomes 
so significant that after such point further increase in σv 
augments the area of the pdf that falls below the 
threshold. In Table 1 the mean overall PODs for each va 
across the spectrum widths of 0.5 to 5 m s-1 are 
presented. It shows that setting the weight to 0.5 yields 
better mean POD only for the unambiguous velocity of 
8.92 m s-1 (even though the maximum POD achieved for 
the unity α is higher). The results in Table 1 imply that 
setting the weight to unity ought to provide better overall 
detection across a range of va values. Also, one could 
use a particular weight setting for each unambiguous 
velocity. Hence, in this case we could have α of 0.5 if va 
is 8.92 m s-1, and unity otherwise. In either case, using 
the weighted sum improves the detection rate compared 
to power only based detector. By setting the weight 
lower one can adjust the detector to favor less coherent 
signals thus making it more similar to the power based 
detector. By the same token, setting the weight higher 
the detector would favor those low SNR signals that are 
more correlated. 
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Figure 3. POD of the function P+α|R(T)| versus the σv 

and va for the weight values of 1 (a), and 0.5 (b),in case 
when M is 17, and SNR is 2 dB. 

va (m s-1) POD for α = 0.5 POD for α = 1 
8.92 0.49442 0.47749 
12.4 0.51710 0.52327 
17.85 0.52580 0.54604 
23.76 0.52195 0.54696 
28.1 0.51848 0.54412 
30.36 0.51641 0.54233 
32.75 0.51489 0.54066 
35.55 0.51307 0.53926 

Mean POD 0.51527 0.53252 
Table 1. The mean overall PODs for the range va values 

across the spectrum widths of 0.5 to 5 m s-1. 

4. TIME-SERIES IMPLEMENTATION 

 Real data evaluation of the detector sum was 
performed using a set of time series data. This set was 
obtained with the KOUN research radar in Norman, OK 
which operates at the wavelength of 11.09 cm. The data 



shown was collected at a PRT of 3.1 ms (va of 8.92  
m s-1), with M = 17, and at elevation of 0.48 deg. In 
standard operation, this corresponds to surveillance 
scan with the threshold set to 2 dB above the noise 
power yielding the PFA of 1.2×10-6 in this case. 
Consequently, this threshold will be used in subsequent 
analysis. Threshold for the weighted sum was set so 
that the PFA is also 1.2×10-6. The original reflectivity 
field obtained using the legacy threshold is plotted in 
Figure 4. 

 
Figure 4. The reflectivity field of the surveillance scan 

data collected by the KOUN. 

 To compare the performance of the coherency 
detector against the SNR based one, various ratios of 
detections are given in Table 2. These ratios are 
explained next. Let us view the field (in polar 
coordinates) as a matrix of size NAZ×NRL, where NRL 
stands for the Number of Range Locations and NAZ for 
the Number of Azimuths in the scan. Let MZ stand for 
the original reflectivity matrix where each matrix entry is 
power value at a given location. Let MN(α) stand for the 
matrix where each matrix entry is 1 if the decision that 
the signal is present is positive, otherwise it is 0. The 
weighted sum is used to determine the matrix entries, 
and α in the brackets denotes the weight value used in 
the sum. Then the values in the row termed as the Ratio 
of total detections are calculated as: 
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Greater than operator is binary (1 if true, and 0 if false) 
and is applied to each matrix entry yielding new matrix 
with 0, 1 entries. The operator .* acts as an element-
wise matrix multiplication (same as in MATLAB). The 
num operator gives the total number of 1s in the matrix. 
This ratio reflects how much of the data classified as 
useful signal using the SNR based detector are also not 
censored by the coherency detector. The Ratio of 
additional detections is: 

( )( )
( )

2 . *

2

num MZ NOISE dB MN

num MZ NOISE dB

α< +⎡ ⎤⎣ ⎦
≥ +

.  (15) 

This ratio gives the portion of data that are originally 
censored by the SNR detector, but are detected as 
signals using the novel approach. The Ratio of missed 
detections is: 

( )( )
( )

2 . *

2

num MZ NOISE dB not MN

num MZ NOISE dB

α⎡ ⎤≥ +⎡ ⎤⎣ ⎦ ⎣ ⎦
≥ +

,  (16) 

where not operator stands for Boolean negation. This 
ratio gives the portion of data that are not censored by 
the legacy detector, but are classified as not useful by 
the weighted sum approach. Coherent detections is the 
sum of the total and the additional detections ratios. 

α 0.5 1 
Ratio of total detections 0.997503 0.993242 
Ratio of additional 
detections 0.009721 0.011137 

Ratio of missed 
detections 0.002497 0.006758 

Coherent detections 100.72% 100.44% 
Table 2. Time-series statistics for the KOUN data. 

 The statistics in the Table 2 shows that in both 
cases the weighted sum picks up close to 100% of all 
legacy detections. There is, however, a slight difference 
of about 0.3% in favor of the sum with the weight of 0.5. 
Such statistics is in agreement with the numbers in 
Table 1 as the mean overall POD is slightly higher for α 
of 0.5 than for the unity if va is 8.92 m s-1. Additional 
detections are very moderate percentage wise in both 
cases but are slightly higher for the unit weight. 
Expressed in numbers the total number of detections 
using the SNR detector for this particular phenomenon 
is 298017. If the coherency detector with the 0.5 weight 
is used, it adds 2897 detections and misses 744. Thus, 
it increases the overall number of detections by 2153.  
When the weight is unity, the number of the additional 
and the missed detections is 3319 and 2014, yielding 
the overall increase of 1305 detections. Table 3 
presents mean spectrum widths and the SNRs of the 
additional and the missed detections. As expected, 
when the weight is higher the detector favors the more 
coherent signals. Additionally, the mean spectrum width 
for the lower weight is closer to the weather signal 
median of 2 m s-1, which may be another reason why 
the lower weight performs slightly better in this case. 

α 0.5 1 
Mean σv of additional 
detections 1.42 m s-1 1.1 m s-1 

Mean σv of missed 
detections 4.8 m s-1 4.47 m s-1 

Mean SNR of 
additional detections 1.47 dB 1.426 dB 

Mean SNR of missed 
detections 1.66 dB 1.75 dB 

Table 3. Mean spectrum widths, and the SNRs of the 
additional and the missed detections for the KOUN data. 



The classification of detections using α value of 0.5, and 
1 is shown in Figure 5 (a) and (b). Visual inspection 
reveals that the number of missed detections is higher 
when using the unity weight. This is in agreement with 
the statistics shown in Table 2. 

 
(a) 

 
(b) 

Figure 5. Classification of detections using the weights 
of 0.5 (a) and 1 (b) for data collected by the KOUN. 

The coherency detector is evaluated on an 
additional two sets of data both collected by the National 
Weather Radar Testbed (NWRT) Phased Array (PAR) 
radar in Norman, OK (Forsyth et. al 2007). This radar 
operates at wavelength of 9.369 cm. The first data set 
was collected with 15 pulses at PRT of 2.664 ms (va of 
8.8 m s-1). The SNR based threshold was set to 2 dB 
corresponding to the PFA of 4.4×10-6. The threshold for 
the WS was set to yield the same false detection rate. 
The reflectivity field is shown in Figure 6, and the 
classification of detections in Figure 7. For this particular 
weather phenomenon the coherency based detector 

picks up 98.73% of the total SNR based detections (i.e., 
Ratio of total detections). The ratios of additional and 
the missed detections are 0.07 and 0.0127, resulting in 
the total of 5.73% more detections. The mean spectrum 
width of all additional and the missed detections is 0.468 
m s-1, and 4.18 m s-1. The mean SNR of all additional 
and the missed detections is 1.47, and 2.41 dB. 

 
Figure 6. Reflectivity field of the uniform PRT data 

collected with the NWRT. 

 
Figure 7. Classification of detections for the uniform 

PRT data set collected with the NWRT. 

The second set was acquired using the range 
unfolding mode where each azimuth position was first 
scanned using surveillance PRT yielding the va of 7.55 
m s-1 with M = 15. After that, data from 44 Doppler 
pulses, with va of 26.14 m s-1, were acquired at the 
same position. In this mode the NWRT signal processor 
(Torres et. al 2008) combines the power estimates from 
the two PRTs by using the power measurements from 
the short PRT at all ranges where the signal processor 



determines that signal is not overlaid. As a result, the 
reflectivity estimates are improved. Also, so obtained 
power measurements are used as an input to the SNR 
based detector. The same is done for the 
autocorrelation measurements for the purpose of using 
those in the coherency detector. The thresholds for both 
the SNR and the coherency based detector were set to 
yield the PFAs of 4.4×10-6, and 10-6 for reflectivity 
estimates obtained from the surveillance and the 
Doppler PRT set, respectively. For velocity 
measurements, these are both set to 10-6. The 
reflectivity and the velocity fields are presented in Figure 
8 (a) and (b). The classification of detection is given in 
Figure 8. The statistics is listed in Table 4 and Table 5. 

 
(a) 

 
(b) 

Figure 8. Reflectivity (a) and the velocity (b) field of the 
dual PRT data collected with the NWRT. 

The statistics for the NWRT data shows similar 
trends as the one obtained from the KOUN radar. It is 

evident that in all cases the coherency based detector 
misses some of the valid data detected by the legacy 
detector. Nonetheless, the ratio of additional detections 
is always somewhat larger than that of the missed ones. 
Hence, using coherency gains more detections on the 
average resulting in the increased sensitivity. Also, the 
average spectrum width of additional detections is 
significantly lower than that of the missed ones, which 
can have positive effect on the velocity estimates. On 
the other hand, the average SNR appears to be higher 
for the missed detections. Finally, observe that the 
additional detections are predominantly located at the 
rim of the weather system. This gives an additional 
assurance that the majority of these detections are 
indeed valid weather returns. 

 
(a) 

 
(b) 

Figure 9. Classification of detections for reflectivity (a), 
and velocity (b) of the dual PRT data set collected with 

the NWRT. 
 



Product Reflectivity Velocity 
Ratio of total 
detections 0.98582 0.978184 

Ratio of additional 
detections 0.031316 0.023729 

Ratio of missed 
detections 0.01418 0.021816 

Coherent detections 101.71% 100.2% 
Table 4. Time-series statistics for the dual PRT data 

collected with the NWRT. 

Product Reflectivity Velocity 
Mean σv of additional 
detections 2.37 m s-1 2.36 m s-1 

Mean σv of missed 
detections 3.88 m s-1 4.25 m s-1 

Mean SNR of 
additional detections 1.98 dB 2.42 dB 

Mean SNR of missed 
detections 3.56 dB 4.1 dB 

Table 5. Mean spectrum widths, and the SNRs of the 
additional and the missed detections for the dual PRT 

data collected with the NWRT. 

5. SUMMARY 

Method to improve censoring of weather radar data 
using the combination of the SNR and coherency based 
signal detection was investigated. Motivation comes 
from the possibility to improve the sensitivity in remote 
sensing devices. A function that linearly combines the 
power and the modulus of the autocorrelation was 
chosen for evaluation. It is termed the “weighted sum” 
because the autocorrelation modulus is scaled by a 
coefficient. By adjusting the value of the weight, users 
can fine-tune the sum for particular applications. Clearly, 
by setting the weight to a value much smaller than one, 
the sum functions more like a SNR based detector, 
while having the weight set to a large value the sum 
favors more coherent signals. In case of a weather 
signal, we are interested in detection of partially 
coherent signals. Thus, a value for the scaling factor 
(i.e., weight) had to be found that optimizes the sums 
effectiveness in detecting the signals of interest. The 
evaluation indicates that setting the weight to unity 
yields balanced results in case of weather signals. 

The sum estimate is compared to a threshold to 
perform the detection. The threshold value is chosen so 
that the rate of false detections does not exceed some 
predetermined value. In most cases this value is rather 
small requiring evaluation of the weighted sum pdf at its 
tail in order to calculate the threshold value. An 
instructional description of a procedure for threshold 
calculation is also presented. The performance of the 
sum was evaluated using both simulated and the radar 
data. The real data analysis shows satisfactory 
performance. When used on a radar data the coherency 
based detection produced improvements in all 
investigated cases. This shows that the novel approach 
has the potential to successfully increase the sensitivity 
of weather radars. 
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