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ABSTRACT

Wind turbines built to generate electricity cause clutter
contamination that is often difficult to distinguish from
weather signals. As the country relies on wind power
for a larger portion of its energy production, more wind
farms are being built to meet this demand. More wind
turbines within the range of weather radar increase un-
wanted clutter returns, which may affect users and other
algorithms, that rely on uncontaminated weather data.
Because the turbines are always at the same location,
it would seem easy to identify where wind turbine clut-
ter (WTC) contaminates the weather data. However,
under certain atmospheric conditions, anomalous prop-
agation (AP) of the radar beam can occur such that
WTC corrupts weather data without the radar operator
knowing of this contamination. As a first step in any
mitigation scheme, an effective detection algorithm is
needed to perform automatic flagging of contaminated
data. The flagged data can then be censored or filtered
out, thus reducing harmful effects that propagate to au-
tomatic algorithms, such as quantitative precipitation es-
timation (QPE). In this paper, both actual and simulated
WTC data are used to study the characteristics of WTC
to design a detection algorithm. It will be shown that
unique spectral features of the Doppler spectrum related
to WTC signatures can be used to classify the radar re-
turn as contaminated by WTC or not. These features
can then be used in a fuzzy logic algorithm to improve
the robustness of the detection algorithm.

1. INTRODUCTION

Wind energy is gaining strong support as a “green”
method of generating electricity throughout the world
for several reasons. Supply uncertainties, the environ-
mental impact of fossil fuels, and the increasing price of
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sustaining current generation methods are some of the
concerns wind power addresses (Department of Energy
2008). Wind power is common in many areas through-
out the world and can provide clean power without worry
that the supply is not renewable. With wind power be-
ing such a promising form of renewable energy, there is
a collaborative effort to expand wind energy such that
20 percent of the nation’s energy in 2030 will be gener-
ated through wind power. While there are many positive
outcomes from this effort, there are negative impacts of
this expansion, one of which is the interference due to
wind turbines on weather radar. The interference is al-
ready a problem for radars today but with the addition of
thousands of wind turbines to meet the goal set by the
Department of Energy, the problem will only get worse.

2. MOTIVATION

Wind turbines are large structures, typically constructed
of four main components: the tower, the nacelle, the ro-
tor, and the blades as shown in Figure 1. The large size
of these structures as well as the rotation of the blades
cause interference for weather radar that is difficult to
distinguish from typical meteorological signatures. This
interference is commonly known as wind turbine clut-
ter. The wind turbines cause returns that look similar to
weather signals and are difficult to distinguish on a plan
position indicator (PPI) plot. This contamination biases
the estimates of the weather signal parameters com-
monly used to observe weather phenomena. In turn, bi-
ased base data carries through to other algorithms such
as quantitative precipitation estimation (QPE) causing
further problems to forecasters (Vogt et al. 2007). False
tornado or mesocyclone detections have also been re-
ported making forecasting even more difficult.

Wind turbines are very much like other ground clut-
ter targets as they do not move from one location to
another. Ground clutter typically has zero velocity so
an algorithm can be designed to mitigate this contam-
ination. Conventional clutter filters such as Gaussian
Model Adaptive Processing (GMAP) (Siggia and Pas-



Figure 1: Typical three-blade wind turbine consisting of a
tower, nacelle, rotor, and three blades. Blades are con-
structed of fiberglass with lightning rods spanning the
length of each blade. Nacelle houses the generator and
equipment controlling the turbine.

sarelli 2005) are an effective method in removing these
clutter targets but are ineffective for WTC. The clutter
filter removes the returns due to the stationary compo-
nents of the wind turbine, such as the tower, but the
moving blades contaminate the data because the clut-
ter filter is not designed to remove non-zero velocities
(Vogt et al. 2007).

Previous studies of the characteristics of WTC have
been carried out to better understand their signatures
(Isom et al. 2009). The first study characterized the
wind turbine spectral signature over time showing dis-
tinct flashes, which appeared as the blade approached
a vertical position relative to the radar. Another study
of the characteristics of WTC showed a more complex
spectral evolution as the blade swept through space as
well as the previous case where flashes occurred in the
time evolution plot (Gallardo et al. 2008). All of these
efforts have been instrumental in the study of WTC and
in pursuing methods to identify and mitigate its negative
effects.

A common statement made in reference to mitigating
WTC for weather radar is the notion that the wind tur-
bines are in fixed locations so knowing where WTC ex-
ists should be a simple task of setting a flag to identify
those gates. Flagging all data as contaminated because
of the existence of a wind turbine in a radar volume is
too aggressive. When there is no wind, the wind tur-

bine blades will also be stationary and conventional clut-
ter filters can be used to recover the weather signal. In
this case, the flag will have eliminated clean data, which
could have been recovered.

Anomalous propagation is probably the most important
reason why an automatic detection algorithm is nec-
essary. Under normal atmospheric conditions, a wind
farm may never be seen by a weather radar. The
beam will overshoot the wind farm in height and no data
in the vicinity of the wind farm will be contaminated.
When specific atmospheric conditions are met, super-
refraction of the radar beam can occur, bending the
beam back towards the earth’s surface. When this oc-
curs, a wind farm that normally is not in the line-of-sight
(LOS) of the radar may come into view. Under clear-air
conditions, this may not be an issue as the radar oper-
ator may know of the existence of the wind farm. Dur-
ing convective events, in contrast, the operator needs
to know what information is due to WTC and what in-
formation is relevant weather data. Algorithms exist to
assist forecasters during convective events, such as the
tornado detection algorithm (TDA) or the mesocyclone
detection algorithm (MDA), but these algorithms do not
have the capability to distinguish WTC like the forecast-
ers. False detections with the TDA or the MDA further
complicate the stressful situations forecasters work in.
An automatic detection algorithm could alleviate these
problems forecasters experience due to WTC.

Unfortunately, using base data, there is no unique sig-
nature of WTC to detect an individual volume for a single
scan. Therefore, temporal and spectral features of the
WTC signal are proposed to be used to distinguish be-
tween weather signals and the canonical case of WTC.

3. DISTINGUISHING FEATURES OF WIND TURBINE
CLUTTER

Most of the features used in the detection algorithm
were determined by observation of the WTC Doppler
spectrum. There are three main components that make
up a typical WTC signal: a tower, a flash, and a hub.
The canonical WTC spectral evolution in time is shown
in Figure 2. The signal at zero velocity is primarily from
the stationary tower of the wind turbine. The flash is be-
lieved to be caused by the blade in its rotation when it
is perpendicular to the ground. There is no definite con-
clusion to the oscillating signal, referred to as hub con-
tamination, but it is believed to originate from the turbine
structures near the rotor of the wind turbine.

The WTC signal is complex as many parameters are
not known for a given signal. The phase of the blade



Figure 2: Canonical WTC spectral evolution. The hub
signal has been highlighted with the oscillating line.

in relation to the radar, the angle of the turbine in rela-
tion to the radar, the rotation rate of the blades, or how
many turbines are in a radar volume are a few of the
unknown parameters of WTC, making it difficult to test
an algorithm. To properly test a new signal processing
algorithm, it is useful to have a controlled environment.
For this automatic detection algorithm, it was necessary
to simulate weather and WTC signals. The weather
signals were simulated using the method developed by
Zrnić (1975). This simulator allows the weather signal
parameters to be varied systematicly such that a wide
variety of weather signals could be added to the WTC
signals. The WTC was assumed to consist of the three
components explained earlier. The tower was simulated
as a zero-velocity, narrow width weather signal, the hub
was simulated as a random process with a varying mean
around zero velocity, and the flash was simulated using
a time-series radar simulator developed by Cheong et al.
(2008). The simulated WTC spectral evolution is shown
alongside the actual WTC spectral evolution in Figure 3.

Observation of the simulated WTC signals led to the de-
velopment of many features that could distinguish WTC
from weather signals. The features were assessed to
determine which showed the most promise in distin-
guishing WTC. A typical tool used to assess the features
is shown in Figure 4. Many features were developed and
analyzed but only the features determined to be useful
are discussed in this paper.

3.1. Spectral Flatness

Spectral flatness is a feature that has been used suc-
cessfully in tornado detection (Yu et al. 2007). Tornado
spectra are known for being quasi-flat across all veloci-
ties and spectral flatness captures this spectral charac-
teristic. The feature is calculated by ordering the spec-
tral components of the signal from low to high values,
removing a percentage of the lowest values from the or-
dered spectrum, and calculating the standard deviation
of the remaining spectral components. The flatter the
spectrum, the lower the value of spectral flatness.

Spectral flatness was selected as a feature to identify
WTC for the cases where a flash was present in the
spectrum. Compared to a typical Gaussian weather
spectrum, when a flash is present, the spectrum flat-
tens out as high velocities alias. A slight modification
was made to the calculation of spectral flatness for this
application; the inverse of the standard deviation of the
spectrum was taken. This allowed for easy identification
during assessment when a spectrum was flat because
of a flash.

3.2. 4th Central Spectral Moment

The 4th central spectral moment was a promising fea-
ture to identify the flash in the WTC spectrum. The 4th
central spectral moment was calculated as

E{Si − vr}4 =
1
M

∑M
i=1(Si − vr)4

[ 1
M

∑M
i=1(Si − vr)2]2

(1)

where M is the number of points in the spectrum, Si

is the spectral component at index i, and vr is the esti-
mated mean velocity from the spectrum.

The 4th moment has values close to zero for a Gaussian
spectrum. When a spectrum deviates from a Gaussian
shape and has a sharper peak or has fatter tails, the
value of the 4th moment increases. The spectrum devi-
ates from a Gaussian when a flash occurs and results in
very high values for the 4th moment.

3.3. Clutter Phase Alignment

Clutter phase alignment (CPA) is not a spectral feature
but is a temporal feature used in the clutter mitigation
decision (CMD) algorithm to detect usual ground clutter
contamination (Hubbert et al. 2008). CPA is computed
as

CPA =
|
∑m

i=1 xi|∑m
i=1 |xi|

(2)



Figure 3: Comparison of actual WTC (left) and simulated WTC (right).

Figure 4: Assessment tool used to find correlation between developed features and WTC features. The correlation
between several developed features and a flash of the WTC is highlighted.



where m is the number of time-series samples and xi is
the time-series sample at index i. For clutter targets, the
value of CPA should be close to its maximum value of 1
whereas for weather, the value is usually less than 1.
The reasoning for using CPA is if there is a wind turbine,
it would only exists where there is a stationary tower.

3.4. Hub-to-Weather Power Ratio

Hub-to-weather power ratio was a feature developed
specifically to detect WTC contamination due to the
“hub”. GMAP is effective in removing zero velocity clut-
ter but the hub contamination oscillates around zero and
is difficult to remove. The increase in power around zero
because of the oscillation is not removed and the clutter
residue contaminates the weather signal.

To compute the hub-to-weather power ratio, the power
of the clutter residue is computed as well as the power
in the weather signal and the ratio between the two is
taken. When the hub power is greater than the weather
power, there will be contamination in the spectrum and
vice versa. This feature works well for detecting the diffi-
cult cases when contamination occurs due to the clutter
residue after clutter filtering.

3.5. Feature Performance Assessment

After the initial assessment was completed for the fea-
tures, simulations were run to vary the weather param-
eters for the simulated weather which were then com-
bined with the WTC signals. For each set of parame-
ters, the values for each feature were calculated for all
the realizations and stored for later use.

The concept of a delta bias was used to determine
whether the spectrum was contaminated or not con-
taminated. The bias inherent in the spectral moment
estimators and signal processing techniques are sub-
tracted from the bias of a spectrum with WTC. This delta
bias is a measure of the bias related directly to WTC. A
threshold is set for the velocity delta bias and any spec-
tra with a delta bias greater than the threshold is con-
sidered contaminated and vice versa. This delta bias
established the truth data which would be used to deter-
mine if the automatic detection identified the spectrum
correctly.

Using delta bias, a histogram was made to see which
features had enough separation between the contami-
nated and non-contaminated cases to find the most use-
ful features for the algorithm. The four features men-
tioned previously had enough separation to use in a

fuzzy logic system. The histogram for spectral flatness
is shown in Figure 5.

4. FUZZY LOGIC SYSTEM

When detecting WTC, specific resolution volumes may
be contaminated but the degree of contamination from
one volume to another may differ significantly. When
observing the spectrum of a contaminated weather sig-
nal, one may see that the spectrum is “completely” con-
taminated while another is only contaminated “slightly”.
Fuzzy logic is a useful method of making human-like de-
cisions with varying degrees of membership in a group
when a clear decision is not possible.

The first step in a fuzzy logic system (FLS) is to cre-
ate membership functions. A membership function is
necessary for each feature used in the algorithm. The
histogram shown previously is an excellent foundation
for determining a membership function, also shown in
Figure 5. The calculated features are the inputs to the
membership functions and the outputs of the member-
ship functions are termed fuzzified values.

After the membership functions have been selected, a
decision as to how to weight and combine the fuzzified
values must be made. The weighting for each feature
is dependent on many things. One example is a feature
may be better suited to detecting a flash more than an-
other feature so a stronger weight will be given to the
first. For the initial algorithm, all features were given
equal weighting.

When combining the output of the membership func-
tions, the fuzzified values can be added, the product of
the values can be taken, or the t-norm of the fuzzified
values can be computed (Mendel 1995).

The final step in this algorithm is to set a threshold on
the aggregated value to make a binary determination
of whether or not the spectrum is contaminated or not
contaminated. The diagram in Figure 6 shows the basic
structure of the automatic detection algorithm.

5. PRELIMINARY RESULTS

Once the FLS was completed, the algorithm was run us-
ing the features on a range of fuzzy logic thresholds to
make a detection. The detection from the FLS was com-
pared against the truth data and the detection was clas-
sified as a correct detection of contamination (true pos-
itive), a missed detection (false negative), a false alarm



Figure 5: Membership function (black) is based on the histograms calculated from the feature values for a set of
cases. Histogram and membership function for spectral flatness is shown.

Figure 6: Block diagram of the fuzzy logic WTC detection algorithm.



(false positive), or a correct detection of no contamina-
tion (true negative).

These four classifications are frequently used to create
receiver operating characteristics (ROC) plots to deter-
mined the performance of a classifier (Fawcett 2006).
Using the four sets of data, the true positive rate (TPR)
and false positive rate (FPR) can be determined to cre-
ate the necessary ROC plots. TPR is defined as

TPR =
True Positives

True Positives + False Negatives
(3)

and FPR is defined as

FPR =
False Positives

False Positives + True Negatives
. (4)

Using the TPR and FPR values for the each threshold
of the fuzzy logic system, a ROC plot can be made. The
ROC plot for the algorithm is shown in Figure 7.

Figure 7: ROC plot for the FLS using equal weighting for
all features.

The analysis of the plot to determine which fuzzy logic
threshold is optimal will depend on whether or not a high
probability of detection is required or if a low false alarm
rate is required. If a high probability of detection is a
requirement, one could infer from the plot that the algo-
rithm with a probability of detection of 97% while having
a false alarm rate of 21% using a threshold of 0.2 would
be ideal. On the other hand, if a low false alarm rate is
a requirement, one could use a threshold of 0.7 and in-
fer from the plot that when using this threshold, the false
alarm rate is 1% and the probability of detection is 32%.

6. CONCLUSIONS AND FUTURE WORK

The growth of wind power in the United States has led
to an increase in the number of wind farms being con-

structed. The wind turbines in use today are already a
problem for weather radar and the continued growth of
the industry will cause even more problems for weather
radar unless an algorithm is developed to mitigate this
WTC. In order to mitigate this clutter effectively, an au-
tomatic detection algorithm is necessary. In this work, a
detection algorithm has been developed using a set of
temporal and spectral features which focus on specific
characteristics of WTC contamination. Using simulated
WTC and weather data, features that help distinguish
between contaminated spectra and non-contaminated
spectra were selected. These features were then com-
bined in a fuzzy logic algorithm and the output of this
algorithm was used to determine the preliminary perfor-
mance of the detection algorithm.

To improve the performance of the algorithm, the fuzzy
logic parameters need to be optimized. The feature
weights, the membership functions, and the fuzzy logic
threshold will be optimized. With an optimized FLS, the
performance of the algorithm should improve. This is
the first step towards mitigating WTC and will lead to
more reliable data to ensure the best possible weather
predictions for society.
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