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ABSTRACT 

A method for estimation of Doppler spectrum and its moments as well as several 

polarimetric variables on pulsed weather radars is presented. This scheme operates on 

oversampled echoes in range, that is samples of in-phase and quadrature phase 

components are taken at a rate several times larger than the reciprocal of the transmitted 

pulse length. The aforementioned radar variables are estimated by suitably combining 

weighted averages of these oversampled signals in range with usual processing of 

samples (spaced at pulse repetition time) at a fixed range location. The weights in range 

are derived from a whitening transformation, hence, the oversampled signals become 

uncorrelated and consequently the variance of the estimates decreases significantly. 

Because the estimates’ errors are inversely proportional to the volume scanning times, it 

follows that storms can be surveyed much faster than is possible with current processing 

methods, or equivalently, for the current volume scanning time, accuracy of the estimates 

can be greatly improved. This massive improvement is achievable at large signal-to-noise 

ratios (approximately greater than 15 dB). 
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1. INTRODUCTION 

This introductory chapter presents the basics behind the problem of estimating 

meteorological variables using a whitening transformation where the fields of digital 

signal processing and remote sensing, particularly in the area of radar meteorology, are 

brought together. First, the principles of operation of polarimetric Doppler weather radars 

are reviewed, and meteorological parameters of interest obtained by these remote-sensing 

devices are presented. Next, weather signals are described both conceptually and 

mathematically. Processing of these signals to obtain meteorological variables, which is 

usually referred to as weather signal processing, is then presented. Autocovariance 

methods are generally preferred due to their computational efficiency and acceptable 

accuracy; however, the performance of these estimation techniques is not optimum, 

leaving room for a much needed improvement. Finally, the problem of obtaining better 

meteorological parameter estimates without sacrificing range resolution or antenna 

rotation speed is recognized, and the remainder of this dissertation focuses on a novel 

method for its efficient solution. 

1.1. Polarimetric Doppler Weather Radars 

Polarimetric Doppler weather radars have a unique ability to survey storms due to the 

capability of microwaves to penetrate clouds and rain, which does not exist on other 

meteorological instruments. These observations enable forecasters to provide timely 

warnings and researchers to understand some of the complex dynamics of meteorological 

phenomena (Doviak and Zrnic 1993). 
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Pulsed weather radars broadcast a brief intense pulse of energy followed by a relatively 

long “listening period” during which energy reflected from scatterers is received and 

processed. The time delay between transmitted and reflected signals determines the 

distance (range) to the scatterers and the strength of the backscattered signal is measured 

to gain information about the scatterers. Doppler radars, additionally, can measure the 

radial velocities of scatterers in the electromagnetic beam path of the radar because of the 

Doppler effect. The electromagnetic pulse is restricted in azimuth and elevation by the 

antenna illumination pattern f(θ,φ) and in time (or range) by a finite transmission time 

(pulse) of duration τ. The space from which the electromagnetic pulse returns echoes to 

the receiver such that contributions from individual scatterers arrive at the same time to 

the receiver is called the resolution volume (see Figure 1.1).  

Figure 1.1. The resolution volume in a pulsed radar is approximately shaped as a frustum of a 
cone. The location of its center in space is given by (r0,θ0,φ0) and its extent by (r1,θ1,φ1) (related 

to the pulse duration and the antenna beamwidth). 

Doppler radars sample the atmosphere using the resolution volume as the “sampling 

unit.” That is, for the collection of all scatterers in each resolution volume, the radar 

supplies three parameters of interest: (a) the total reflected power, P, which is related to 

the liquid water content or precipitation rate; (b) the composite Doppler radial velocity, 

v , which is essentially mean radial motion of scatterers towards or away from the radar; 

θ1
Resolution 
Volume 

θ0

r1

r0
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and (c) the Doppler spectrum width, σv, which is an indication of shear or turbulence 

from the scatterers associated with a given resolution volume (Zrnic 1979). 

Doppler radars capable of transmitting two electromagnetic beams with different 

polarization provide several additional parameters of interest. Dual polarization 

measurements are based on the fact that raindrops, particularly larger ones, are not 

spherical, so they will respond differently to vertically and horizontally polarized 

electromagnetic waves. When the information can be retrieved with sufficient accuracy, 

polarimetry allows better precipitation measurements, classification of hydrometeors, 

identification of electrically active storms, and distinction of biological scatterers as 

shown in recent experiments (Zrnic and Ryzhkov 1999).  

A simplified block diagram of a polarimetric Doppler weather radar like the one planned 

as an improvement to the national network of weather radars WSR-88D (NEXRAD) is 

depicted in Figure 1.2 (Zahrai and Zrnic 1997). The radar transmits and receives 

simultaneous horizontal and vertical polarizations with the aid of two receivers and just 

one transmitter. A novel arrangement of switches distributes each signal to its 

corresponding receiver. After demodulation and synchronous detection, in-phase (I) and 

quadrature (Q) components are digitized and routed to the processing subsystem for 

parameter estimation and display. 

As a reference, some of the parameters of the WSR-88D radar operated by the National 

Weather Service are presented in Table 1.1.  
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Figure 1.2. Simplified block diagram of a polarimetric Doppler weather radar. A Klystron pulse 
modulated by a radio-frequency (RF) signal is transmitted by the antenna with vertical and 

horizontal polarization at periodic time intervals. During the “listening periods”, weather echoes  
are received (a tilde indicates signals at RF). Coherent down-conversion (synchronous detection) 

controlled by a stable local oscilator (“stalo”) produces base-band complex envelopes 
VH = IH + jQH and VV = IV + jQV for the horizontal and vertical channels, respectively. After 

digitalization, I and Q signals are used for the estimation of spectral moments and polarimetric 
variables.  
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Antenna Subsystem 
Pedestal 

Maximum scanning rates 30º s-1 

Acceleration 15º s-2 
Mechanical limits -1º to +60º in elevation 

Reflector 
Type Paraboloid of revolution 
Polarization Linear 
Diameter 8.54 m 
Gain 44.5 dB 
Beam width 1º 
First sidelobe level -26 dB (with radome) 

Transmitter and Receiver Subsystem 
Transmitter 

Frequency 2700 MHz to 3000 MHz 
Pulse peak power 700 kW 
Pulse widths, 6 dB 1.57 μs and 4.71 μs 
Pulse repetition frequencies (PRF) 

 Eight selectable in the range from 
Short pulse 320 Hz to 1300 Hz 
Long pulse 320 Hz and 450 Hz 

Receiver 
Type Linear 
Dynamic range 93 dB 
Intermediate frequency 57.6 MHz 
Bandwidth, 3 dB 630 kHz 

Signal Processor Subsystem 
Intensity calculation Linear return power average 
Velocity calculation Pulse-pair 
Spectrum width calculation Pulse pair logarithm 
Number of pulses in Doppler modes 40 to 280 
Number of pulses in Surveillance 

d
16 to 65 

  

Table 1.1. Summary of specifications for the National Weather Service WSR-88D weather 
surveillance radar (also known as NEXRAD). 
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1.2. Weather Radar Signals 

Weather radar signals are a composite of echoes from a very large number of individual 

hydrometeors or from refractive index irregularities in clear air. These signals are 

sampled at discrete time delays τs, where the corresponding range (or distance from the 

radar) is given by r = cτs/2 (c is the speed of light). The “range time” τs is the time it 

takes a transmitted pulse to make a round trip to a distance r. Pulses of a radio-frequency 

(RF) sine wave of width τ are sent every Ts seconds; this gives origin to the sample time, 

or time between samples for a fixed location in range (Figure 1.3). 

 

Figure 1.3. Depiction of sample time and range time in a polarimetric Doppler radar. Pulses of 
width τ are transmitted every Ts seconds. During reception between pulses, echoes are sampled at 

times τs (range time). Samples at a fixed range location are spaced by Ts and give origin to the 
sample time. 

For each sample value there is an associated resolution volume in space with the 

hydrometeors that contribute the most to that sample. A weighting function that depends 

on the antenna radiation pattern, the transmitted pulse shape, and the receiver-filter 

transfer function determines how each sample contributes to the composite signal (Zrnic 

τ 

t 

range gate corresponding to the 
resolution volume centered at r1=cτs1/2

Ts  

τs1 

range time 

τ 

τs1

range time 

sample time
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and Doviak 1978). Figure 1.4 shows contributions from spaced resolution volumes as 

seen by the antenna. Figure 1.5 shows the corresponding signal from the receiver’s point 

of view. 

 

Figure 1.4. Contributions to weather signals from hydrometeors in a resolution volume. Signal 
samples are denoted by V(lτ), and their corresponding range, rl, is given by clτ /2, where l is a 

positive integer. In this example, as in the WSR-88D radar, range gate sampling times are given 
as lτ, where τ is the transmitted pulse width. 

Figure 1.5. Weather echo amplitude for a point scatterer at range r1 after the receiver filter and the 
synchronous detector. The contribution of each hydrometeor is determined by the weighting 

function W(τs). τr is the radar delay, and τs1 is the sampling time (from Doviak and Zrnic 1993). 

It was mentioned before that weather echoes contribute to produce a complex voltage 

sample V = I + jQ, where I and Q are the in-phase and quadrature components, 

τ 

τs1 

τs 

τr 
W(τs)

2rs1/c 

Sample amplitude 

rl = c(lτ)/2 

V(lτ −τ) 
V (lτ +τ)V(lτ)
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respectively. The random size and location of scatterers cause I and Q to be random 

variables. By the central limit theorem, I and Q have Gaussian probability density 

function (pdf) with zero mean and variance σ 2 (Zrnic 1975). The pdf of the magnitude of 

V is Rayleigh, and the one of the phase is uniform in the interval [0, 2π) (Papoulis 1984). 

Although I and Q are uncorrelated random variables, the correlation between successive 

samples is not zero. The correlation between two successive samples will be appreciably 

different from zero if the distribution of Doppler velocities for the scatterers in the 

resolution volume is “narrow” compared to the range of unambiguous velocities. A 

narrow distribution of velocities corresponds to a more “coherent” process; this explains 

an appreciable correlation between samples.  

For Doppler measurements the radar is pulsed at a sufficiently high rate so that the 

atmospheric phenomena produce correlated signal samples. The sample-time correlation 

of weather signals )()(
s

T
V mTR  is a Gabor function (it is Gaussian for zero Doppler 

velocity) and given by (Doviak and Zrnic 1993) 

 ( ) λπλπσ /42)( ]/8exp[)( smTvj
svs

T
V emTSmTR −−= , (1.1) 

where the superscript (T) denotes “sample time,” S is the weather signal mean power, v  

the mean Doppler velocity of scatterers, and vσ  the associated spectrum width. In 

addition, λ is the radar wavelength which is linked to the RF frequency f through the 

relation λ = c/f. 

Under certain assumptions, the correlation of samples along range time can be derived 

exactly. If the scatterers are uniformly distributed in space and the transmitter pulse has a 

finite duration of τ seconds, we can decompose the contribution of all hydrometeors in 



9 

the resolution volume to the signal V sampled at time τs as a sum of L contributions dV 

from contiguous elemental shells in the range interval cτ /2. Each elemental shell has a 

depth in range given by ro = cτ /2L = cτo/2, where the sampling time τo is defined as τ /L. 

For simplicity, let us represent all the scatterers in each elemental shell by an equivalent 

“aggregate scatterer”. These equivalent scatterers are located at ranges ro, 2ro, 3ro, etc. 

Here we assume that the scatterers are frozen although they have random placement. This 

is a good approximation because the little reshuffling that occurs during the separation 

time between echoes from overlapping range intervals can be neglected (τ is on the order 

of microseconds). Figure 1.6 depicts the decomposition of the resolution volume into 

elemental shells and the weighting on each shell’s contribution by the transmitted pulse 

shape along the sample-time (range) axis.  

Figure 1.6. Decomposition of the resolution volume into L independent shells, each contributing a 
differential voltage dV weighted by the transmitted pulse shape. Weights of elemental shell 

contributions to V(τs1) and V(τs1+mτo) are shown in solid and dashed lines, respectively. 

Thus, the contribution dV at sample time τs from the i-th shell in the resolution volume 

corresponding to range rs at the receiver front end is given by  

ro 

rs1 rs1+mro 

V(τs1+mτο)

V(τs1)

 p(τ +τs1−τs) 
  dV 

r,τs 

 p(τ +τs1+mτo−τs) 

rs1+cτ/2 rs1+mro+cτ/2 
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where p is the transmitter pulse envelope, A(rs) is the backscattered signal (amplitude and 

phase) corresponding to the shell at range rs, and the corresponding phase includes 

temporal (2πfτs), propagation (4πrs/λ), and initial transmitter ( tψ ) phase terms. In (1.2) 

the tilde indicates that signals have not been down-converted to base band. The 

composite weather signal at a fixed sampling time τs1 can be expressed as the sum of 

elemental contributions as 

 ∑
−

=

=
1

0
11 ),(~)(~

1

L

i
srs iVdV

s
ττ . (1.3) 

Using (1.3), the correlation of samples along range time before the receiver filter 

(equivalent to having an ideal, infinite-bandwidth receiver filter) can be written as 

 =+= )](~)(~[)( 11
*)(

~ osso
R

V mVVEmR
ideal

ττττ  
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osmrrsr kmVdiVdE
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τττ , (1.4) 

where the superscript (R) denotes “range time” and the subscript ideal refers to the 

receiver filter characteristics. Taking the expectation operation inside the summations in 

(1.4) produces  

 [ ]∑∑
−

=

−

=
+ +=

1

0

1

0
11

*)(
~ ),(~),(~)(

11

L

i

L

k
osmrrsro

R
V kmVdiVdEmR

ossideal
ττττ . (1.5) 

The expected value inside (1.5) can be computed as 



11 

    =++ )],(~),(~[ 11
*

11
kmVdiVdE osmrrsr oss

τττ  

 [ ]{ cirrpeirrAE oss
irrfj

os
toss /)(2)( 11
]/)(42[

1
* 11 +−++= ++−− ττψλπτπ  

 [ ]}ckrmrrmpekrmrrA oosos
krmrrmfj

oos
toosos /)(2)( 11
]/)(4)(2[

1
11 ++−++++ +++−+ τττψλπττπ  

 λπτπ /)(42
11

*   )]()([ oo rkmijfmj
oosos eekrmrrAirrAE −−+++=  

 [ ] [ ]ckrmrrmpcirrp oosososs /)(2/)(2 1111 ++−+++−+ τττττ . (1.6) 

If the wavelength λ is small compared to the size of each elemental shell, the 

contributions from different shells are independent random variables because non-

overlapping shells have no scatterers in common. Therefore, 

 )()( )]()([ 1
2
s11

* kmiirrkrmrrAirrAE osoosos −−+=+++ δσ , (1.7) 

where δ is the usual discrete-time Krönecker delta, and )(2 rsσ  is the backscattered power 

contribution of each shell (E[|dV|2]), which was assumed to be uniform so 22 )( ss r σσ = . 

Introducing (1.7) into (1.6) and using the fact that crss /2 11 =τ (1.5) becomes 
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ττττστ τπ . (1.8) 

Letting k = L − i so that i = L − k, and using the fact that τ  = Lτo,  (1.8) becomes 
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0
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mfj
so
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V mkpkpemR o

ideal
ττστ τπ . (1.9) 

Finally, recognizing that the summation in the previous equation is the convolution of 

p(mτo) with p(−mτo),  

 o

ideal

mfj
ooso

R
V empmpmR τπττστ 2*2)(
~ )]()([)( −∗= . (1.10) 

For a non-ideal receiver filter, i.e. a receiver with a finite bandwidth, the correlation of 
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samples in range time can be determined as (Doviak and Zrnic 1979) 

 )()()()( *)(
~

)(
~ ooo

R
Vo

R
V mhmhmRmR

ideal
ττττ −∗∗= , (1.11) 

where h is the impulse response of the receiver filter. Using the commutative and 

associative properties of the convolution, we can define the “modified” pulse envelope 

 )()()( ooom mhmpmp τττ ∗= , (1.12) 

so the correlation of samples in range time after the receiver filter can be written in an 

analogous fashion as in (1.10) to obtain 

 omfj
omomso

R
V empmpmR τπττστ 2*2)(
~ )]()([)( −∗= . (1.13) 

The linear phase term of (1.13) is inherent to the propagation of the electromagnetic 

wave and has been overlooked in derivations that consider the signal at base band (e.g., 

Doviak and Zrnic 1979).  

After the synchronous detector, the correlation of range samples can be found by 

recognizing that V at base band can be obtained from V~  at RF (radio frequency) via the 

down-conversion process as 

 12
11 )(~)( sfj

ss eVV τπττ −= ; (1.14) 

therefore, 

 =+= )]()([)( 11
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* )()](~)(~[ −− =+= . (1.15) 

Finally, 
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 )]()([)( *2)(
omomso

R
V mpmpmR ττστ −∗= . (1.16) 

Although the theoretical result in (1.16) predicts a real autocorrelation for samples along 

range time, practical effects such as amplitude modulation-to-phase modulation (AM-to-

PM) conversion within the pulse were not accounted for in the analysis. In fact, the 

complex nature of )(R
VR was recently exposed after analyzing practical measurements 

performed on oversampled (in range) weather signals acquired with a digital receiver on 

the WSR-88D (Ivic 2001). Nevertheless, the analysis in the following chapters can 

readily accommodate the linear phase terms in )(R
VR like the ones observed by Ivic (2001). 

As a final comment in this section, note that the expression for the correlation coefficient 

[dividing (1.16) by 2
sσ Σi |pm(iτo)|2] along range time depends solely on parameters that 

are known (or can be measured) and therefore allows for its exact determination. This 

important observation will be exploited later. 

1.3. Weather Signal Processing 

The principal purpose of radar signal processing is the accurate, efficient extraction of 

information from radar echoes. Modern atmospheric polarimetric Doppler radars can 

sample an entire volume of a weather event in just a few minutes. Therefore, a very large 

amount of data must be processed to give the user compact, comprehensible information 

(spectral moments and polarimetric variables). Note that signal processing for weather 

radars is primarily used as an estimation procedure. Target detection is not the goal of 

these remote sensing devices. 
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The output of a polarimetric radar receiver consists of two complex signals (see Figure 

1.2), 

 VH(kTs) = IH(kTs) + jQH(kTs) = sH(kTs) exp(jωdkTs) + nH(kTs), (1.17) 

and 

 VV(kTs) = IV(kTs) + jQV(kTs) = sV(kTs) exp(jωdkTs) + nV(kTs), (1.18) 

where the subscripts H and V stand for horizontal and vertical polarizations (channels), s 

and n represent the signal and noise component of the weather echo, ωd is the Doppler 

shift, and Ts the pulse repetition time (PRT) or time between pulses. These time series in 

raw form convey little useful information about the weather, but their second order 

moments are well defined and contain the essential information. Therefore, further 

processing is needed to retrieve these statistical quantities and to provide significant 

information to meteorologists. 

As previously mentioned, V is usually characterized by a Gaussian correlation in sample 

time and therefore the auto- and cross-correlation functions for the polarimetric signals 

are: 

 )()()( /4)(
sH

mTvj
sHs

T
V mTNemTSmTR s

H
δρ λπ += − , (1.19) 

 )()()( /4)(
sV

mTvj
sVs

T
V mTNemTSmTR s

V
δρ λπ += − , (1.20) 

 λπρ /4)( )()( s

VH

mTvj
sHVVHs

T
VV emTSSmTR −= , (1.21) 

where ( ) ]/8exp[)( 2λπσρ svs mTmT −=  is the signal correlation coefficient, 

)()0()( sHVsHV mTmT ρρρ =  the cross-correlation coefficient, S and N are the signal and 
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noise power respectively, and λ is the transmitter wavelength. The notation for ρVHVV is 

simplified to ρHV for the sake of consistency with the notation found in the literature. 

Note that in (1.21) it was assumed that the cross-coupling between horizontal and vertical 

channels is negligible, hence the cross-correlation between the noise in the horizontal and 

vertical channels is zero. 

Expressions (1.19) to (1.21) correspond to a power spectral density (also called Doppler 

spectrum) of the form: 

 ( )[ ]  ,
2

2/exp
2

)( ,22,
, λ

σ
σπ

ς sVH
v

v

VH
VV

TN
vv

S
v

VH
+−−=   (1.22) 

where the subscripts H,V indicate that the same expression applies for either horizontally- 

or vertically-polarized signals. Parameters S, v  and σv are related to precipitation and 

kinematic fields and thus contain meaningful information if they are accurately 

estimated. 

Spectral moment estimation methods make use of known statistical properties of weather 

signals, and a considerable number of such methods have been introduced in the 

literature. However, throughout this work special stress will be given to the properties of 

those spectral moment estimation methods implemented in the WSR-88D radar.  

The total power in the weather echo, P = S + N, is estimated with the formula 

 ∑∑
−

=

−

=

==
1

0

2
,

1

0
,, )(1)(1ˆ

M

k
sVH

M

k
VHVH kTV

M
kP

M
P , (1.23) 

where M is the number of samples available for  processing. This estimator is unbiased 

and its variance is given by 
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The expectation inside the double summation can be simplified for Gaussian processes as 

follows (Reed 1962): 
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Finally, 
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which gives 
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Hence, errors in mean power estimates can be reduced by increasing the available 

number of samples M or by reducing the noise power, both of which may be parameters 

out of the user’s control.  

An important result arises from the noiseless case. If there is no noise (1.27) becomes 

 ∑
−
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−
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1
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2 )()ˆ(
M

Mm
smT

M
mM

SPVar ρ . (1.28) 

This leads to the definition of the equivalent number of independent samples (Walker et 

al. 1980) as the ratio of the variance of a single sample to the variance of the sampled 
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mean: 
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where Pk is the mean power of each sample used in the average, i.e. Pk = E{|VH,V(kTs)|2}, 

so Var(Pk) = S2. In other words, the equivalent number of independent samples is the 

number of uncorrelated samples that achieve the same variance reduction as a given set 

of correlated samples. 

One of the simplest methods for the estimation of the first and second spectral moments 

is the autocovariance or pulse-pair processing (Sirmans and Bumgarner 1975). Using this 

technique, the mean Doppler velocity v  and the spectrum width σv can be estimated with 

the following formulas (Doviak and Zrnic 1993): 
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where 

 NPS −= ˆˆ , (1.32) 

is the weather signal power estimator based on (1.23), and 

 ∑
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is the asymptotically-unbiased estimator of the autocorrelation of V for lag one. 
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Zrnic (1977) derived expressions for the variances of these estimators for high signal-to-

noise ratio (SNR) and small spectrum width as 

 
π

λσ

s
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)ˆ( ≈ , (1.34) 

and 
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3)ˆ( ≈ . (1.35) 

As before, variance reduction is achieved by increasing the number of available samples 

M in (1.33). 

It was mentioned earlier that polarimetric variables supply additional parameters related 

to precipitation type and amount. Here, I will concentrate on three of these, namely the 

differential reflectivity ZDR, the total differential phase ΦDP, and the magnitude of the 

cross-correlation coefficient at lag zero |ρHV(0)|. The differential reflectivity ZDR (in dB) 

is used for accurate rainfall estimation and hydrometeor identification. It may be 

estimated using the formula 

 ⎟
⎟
⎠

⎞
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⎝
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=

V
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DR S

SZ ˆ
ˆ

log10ˆ
10 , (1.36) 

where Ŝ  (for horizontal or vertical co-polar signals) is computed from the mean power 

estimate in (1.32) as VHVHVH NPS ,,,
ˆˆˆ −= . Another polarimetric variable that enhances the 

classification and quantification of precipitation is the correlation between the two co-

polar signals. One co-polar signal is for vertical polarization of transmitted and received 

waves whereas the other is for horizontal polarization of these waves. This correlation is 
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obtained as 
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and the argument of (1.37) gives the total differential phase ΦDP. As with the spectral 

moments, it can be shown that the variances of the estimators in (1.36) and (1.37) are 

inversely proportional to the number of samples M (Sachidananda and Zrnic 1985, 

Ryzhkov and Zrnic 1988, Liu et al. 1994). 

To obtain meaningful estimates that allow efficient quantification of weather phenomena, 

estimation errors must be kept below maximum allowable limits. WSR-88D 

specifications call for a nominal error in Doppler velocity and spectrum width of 1 m s−1 

and a fractional error of 1 dB is allowed for the estimation of mean power. Similar 

constraints are established for the polarimetric variables to obtain accurate 

meteorological fields. The only parameter we can adjust to accommodate these 

requirements is the number of samples used in the estimation process. More samples are 

required to lower error magnitudes, which in turn implies a slower antenna rotation rate 

and an overall increase in acquisition time. With longer times between scans, the probing 

of weather phenomena is performed less frequently and important storm developments 

could be missed. The statistical estimation framework becomes of particular significance 

when the goal is to scan a phenomenon quickly and accurately, since the random-process 

nature of weather signals will demand a certain amount of averaging if a desired accuracy 

is to be achieved. This is a trade-off in all polarimetric Doppler radar systems. 



20 

1.4. Problem Statement 

Polarimetric weather radars probe the atmosphere and retrieve spectral moments and 

polarimetric variables for each resolution volume in the surrounding space. To reduce the 

statistical uncertainty of estimates of spectral moments and polarimetric variables for 

each resolution volume it is customary to average signals from many pulses. The 

variance reduction of averaged estimates is inversely proportional to the equivalent 

number of independent samples (1.29), which depends on the correlation between 

samples and the total number of samples averaged. The number of samples available for 

averaging is determined by the pulse repetition time Ts and the dwell time, which is 

usually determined by the required azimuthal resolution. In addition to averaging along 

sample time, some radars average a few samples along range time to further reduce the 

estimates’ errors. However, this process degrades the range resolution of the system, 

diminishing its effectiveness for sampling small-scale phenomena. 

On one side, large estimation errors restrict the applicability of weather surveillance 

radars for precise quantification and identification of weather phenomena. On the other 

hand, the need for faster updates between volume scans calls for faster antenna rotation 

rates, which limits the number of samples available for each resolution volume, which as 

shown before, is inversely related to the variance of estimates. These are conflicting 

requirements.  

A technique that increased the number of independent samples by keeping the dwell time 

constant without degrading the range resolution would help solve either one of these 

problems. More independent samples would reduce the estimates’ errors at the same 

antenna rotation rate, or would speed up volume scans while keeping the errors at 
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previous levels; in both cases no or little degradation in the range resolution of estimates 

is required. 

A well-known method to reduce the acquisition time without sacrificing range resolution 

is the pulse compression technique (Nathanson 1969, Mudukutore et al. 1998). Pulse 

compression can be applied to increase the number of independent samples by averaging 

high-resolution estimates in range. However, most ground-based weather radars do not 

use pulse compression due to the so-called range sidelobes and the need to increase the 

transmission bandwidth. 

The remaining chapters of this dissertation are devoted to a detailed study of a novel 

method that increases the equivalent number of independent samples available for the 

estimation of meteorological variables without requiring a larger transmission bandwidth. 

It will be shown that it is possible to utilize the weather signal samples efficiently so that 

the variance of the estimates is considerably reduced with little sacrifice in range 

resolution or antenna rotation speed. 
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2. WHITENING TRANSFORMATION OF  
OVERSAMPLED RANGE DATA 

Chapter 1 presented the problem of obtaining more accurate estimates without decreasing 

the antenna rotation speed or degrading the range resolution considerably. This chapter is 

devoted to introducing a practical and efficient answer to the aforementioned problem 

where the proposed solution involves the use of a whitening transformation on 

oversampled data along range time. The study of theoretical estimation performance 

limits and the conditions under which these limits are attained motivate the use of a 

whitening transformation. Other approaches aiming to solve similar problems found in 

the literature are reviewed and disqualified as candidate solutions for different reasons. 

Next, the goals and implications of this research work are stated. Finally, the last two 

sections of this chapter are devoted to studying the implementation of the whitening 

transformation on oversampled range data and its performance in environments with and 

without additive noise. The application of this technique to the construction of efficient 

estimators of Doppler spectral moments and polarimetric variables is addressed in 

Chapters 3 and 4. 

2.1. Motivation 

The current implementation of spectral moment and polarimetric variable estimators uses 

a simple method of averaging samples in range at the expense of degradation in range 

resolution. Simple averaging, however, does not yield the best performance when the 

observations are correlated [see (1.28)]. 
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What is the best performance that could be reached? The Cramer-Rao Lower Bound 

(CRLB) provides the theoretical ideal performance of an unbiased estimator of a set of 

signal parameters. An unbiased estimator that attains the CRLB is said to be efficient in 

that it efficiently uses the data. The expression for the bound is (Kay 1993) 

 [ ] piiii  ..., ,2 ,1      ;  )()ˆvar( 1 =≥ − θIθ , (2.1) 

where θ=[θ1 θ2 … θp]T is the vector of parameters to be estimated and I(θ) is the p-by-p 

Fisher information matrix. For the general case, the Fisher information matrix is defined 

as  
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where p(x;θ) is the probability density function of the observations x parameterized by 

the unknown vector of parameters θ. For zero-mean, complex Gaussian observations 

with covariance matrix C, the expression for I(θ) is simplified as [(15.52) of Kay (1993)] 
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Let us compute the CRLB of the power estimator1 of complex, zero-mean Gaussian data 

with correlation matrix given by C = Sρ. Here S is the signal mean power, and ρ is the 

normalized correlation matrix of the complex samples used in the estimation process. In 

this case, it is straightforward to see that 2}])({[)( 2)(C1
S
M

dS
SdStrSI == −C  and consequently 

                                                 

1 For a more detailed analysis of the CRLB for Gaussian random processes in the context of weather radars 
refer to Frehlich (1993). 
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Based on the previous equation, the CRLB does not depend on the correlation structure 

of the observations, and it can be inferred that it is not the correlation between 

observations that limits the accuracy of a given estimator, but the way those observations 

are used to compute the estimates. Therefore, it is reasonable to think that knowledge of 

the correlation coefficient ρ(mTs) could be used to formulate estimators that attain the 

CRLB (Schulz and Kostinski 1997).  

It is known from estimation theory that classical estimators of the mean and variance of 

white (i.e. uncorrelated) Gaussian observations attain the CRLB. Therefore, one would 

like to derive a transformation on the original data based on their correlation such that the 

resulting samples would be uncorrelated (or white). Still, this transformation would have 

to preserve the same properties that are of interest in the original data set. If the 

underlying samples have zero mean such transformation exists and it is usually termed as 

“whitening” (Van Trees 1968) or decorrelation transformation. The whitening 

transformation has been applied to solve a variety of signal processing problems (Sosulin 

and Kostrov 1998, Mohamed and Schwarz 1998, Izquierdo et al. 2000, Bruniquel et al. 

1996) and in this research work it will be exploited for the transformation of oversampled 

range data to generate efficient estimates of meteorological variables. 

2.2. Previous Work 

The problem of obtaining more efficient spectral moment and polarimetric variable 

estimates is not new, and several solutions have been proposed to reduce output product 
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errors in weather radars. In the quest for finding better estimators of spectral moments, 

Zrnic (1979) showed that maximum likelihood (ML) estimators yield errors one order of 

magnitude less than those obtained with conventional autocovariance methods. Later, 

Frehlich (1993) improved Zrnic’s results and derived simplified expressions to test new 

estimators based on the ML approach. Due to the complexity of ML estimators, 

researchers focused on ways to simplify spectral moment estimators by assuming 

knowledge of some of the underlying parameters of the weather signal. Bamler (1991) 

computed the CRLB for Doppler frequency estimates assuming both the correlation (or 

spectrum) of samples and SNR are known. Frehlich (1993) analyzed the performance of 

approximate ML estimators under analogous assumptions. Later, Chornoboy (1993) 

obtained an optimal estimator for Doppler velocity that is simpler than ML formulations, 

but again, the SNR and the spectrum width were assumed to be known. Using the 

whitening approach, Frehlich (1999) investigated the performance of ML estimators of 

spectral moments under the same assumptions of previous works. Summarizing, 

compared to classical estimators (Zrnic 1979), ML estimators provide better accuracy for 

high SNR and are moderately complex if the spectrum width is known a priori. However, 

this last assumption restricts the application of these estimators, because the correlation 

coefficient of V(kTs) is not known and must be estimated. That is, for processing spectral 

moments, the joint estimate of S, v , and σv would need to be calculated, which turns out 

to be computationally very intensive. 

Koivunen and Kostinski (1999) took a step further. They suggested that knowledge of the 

correlation coefficient could improve the variance of spectral moments estimates. By 

means of the whitening transformation, they devised improved estimators that 
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theoretically can achieve the CRLB. Nevertheless, this attempt fails again because the 

correlation of weather signals along sample time must be estimated and Gaussian sample-

covariance matrices are ill conditioned (Kostinski and Koivunen 2000). 

Alternatively, Rodríguez González (1999) acknowledged that the variance of estimates 

could be reduced by averaging a number of samples along range, and that this number of 

samples depends on the range correlation function, which is known exactly in the case of 

range samples (1.13). However, in this work the author merely computes the number of 

independent samples for a given set of radar parameters, and no effort is being made to 

obtain better spectral moment estimates by using the knowledge of those parameters. 

More recently, Fjørtoft and Lopès (2001) proposed a method for estimating the 

reflectivity on synthetic aperture radar (SAR) images with correlated samples (pixels). 

The method is based on a modified whitening transformation (Novak and Burl 1990) that 

exhibits a low computational complexity and is suitable for oversampled data. Although 

they did not extend this approach to the estimation of other spectral moments or the 

polarimetric variables, this work shows one of the first successful attempts at using a 

whitening transformation in the pursuit of improved estimators for remote sensing 

devices. 

It will be shown later that in contrast to most of the previous work, the whitening 

transformation on oversampled data along range time results in an efficient and practical 

method of obtaining better estimates of spectral moments and polarimetric variables. 
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2.3. Significance 

The purpose of this work is to provide a method whereby the abovementioned 

deficiencies of the previous work are overcome. The proposed processing increases the 

number of independent samples in a simple manner while the sacrifice in range resolution 

is minimal and the transmission bandwidth is not broadened. It is somewhat surprising 

that previous works overlooked the fact that while the correlation of samples separated 

by Ts needs to be estimated for each particular case (it depends on the meteorological 

conditions being observed), samples spaced in range exhibit a correlation coefficient that 

allows its exact computation a priori; the underlying assumption here is that the mean 

echo power changes very little over the average interval in range. By exactly knowing the 

correlation coefficient, it is possible to apply the whitening transformation without 

worrying about the pitfalls originating from an estimated quantity. As a result, we obtain 

MI = M [see (1.29)], and the variance reduction through averaging is maximized. 

Maximization of the equivalent number of independent samples lead to the following 

implications: 

• For the same uncertainty as the one obtained with correlated samples, faster scan 

rates are possible, as the total number M of samples for a resolution volume is 

determined by the pulse repetition time (PRT) and the dwell time. 

• For the same scanning rates, lower uncertainties can be obtained, making the use of 

polarimetric variables feasible for accurate rainfall estimation and hydrometeor 

identification. 

With the advent of digital receivers (Brunkow 1999), oversampling is indeed feasible. 
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Therefore, it is possible to maintain the same current radar capabilities (involving no 

oversampling or whitening) while adding, in parallel, a set of more reliable estimates 

obtained from whitened oversampled range data. 

2.4. Implementation 

The procedure starts with oversampling in range so that there are L samples during the 

pulse duration τ (that is oversampling by a factor of L). Assume that the range of depth 

cτ /2 (where c is the speed of light) is uniformly filled with scatterers. For relatively short 

pulses this is a common occurrence. For convenience, the contribution from the 

resolution volume to the sampled complex voltage V(nTs) = I(nTs) + jQ(nTs) at a fixed 

time delay nTs, can be decomposed into sub contributions s(lτo,nTs) from L contiguous 

elemental shells or “slabs” each cτ /2L thick, as shown in Chapter 1.  For simplicity τo 

and Ts are dropped hereafter so the indexes l and n indicate times at sampling-time 

(range- time) increments τo and at pulse-repetition (sample-time) increments Ts, 

respectively. The voltages s(l,n) are identically distributed complex Gaussian random 

variables, the real and imaginary parts, Re{s(l,n)} and Im{s(l,n)}, have variances σ2, and 

the average power of s(l,n)  is σs
2 = 2 σ2.   Pulse of an arbitrary shape p(l) (index l 

indicates time increments of τo within the transmitted pulse which correspond to a 

decreasing index in range, see (4.17) in Doviak and Zrnic 1993) induces weighting to the 

contributions from contiguous “slabs” such that the composite voltage is  
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where h(l) is the impulse response of the receiver filter. Then, as shown in Chapter 1 
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V −∗= σ , (2.6) 

where the modified pulse envelope pm is given by 
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Hence, the correlation coefficient of range samples )(R
Vρ is 
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If the transmitted pulse envelope has a rectangular shape (ideal transmitter) and the 

receiver has infinite bandwidth, the correlation coefficient of samples along range time 

simplifies to 
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For other pulse shapes and band-limited receivers )(R
Vρ  can be evaluated by attenuating 

the transmitted pulse, injecting it directly into the receiver, and oversampling the result to 

obtain the modified pulse envelope pm.  Introducing pm into (2.8) produces )(R
Vρ ; this is 

done only once for a given pulse shape and receiver bandwidth.  

The procedure for implementing the whitening transformation is as follows. Define the 

Toeplitz Hermitian normalized correlation matrix CV as 
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Because this matrix is positive semidefinite (Therrien 1992), it can be decomposed into a 

product of a matrix H and its conjugate transpose (or adjoint) as  

 CV = H* HT, (2.11) 

where the superscript T indicates matrix transpose. Any H that satisfies (2.11) is called a 

square root of CV (Faddeev and Faddeeva 1963) and is the inverse of a whitening 

transformation matrix  

 W = H−1,  (2.12) 

which if applied to the range samples produces L uncorrelated random variables with 

identical variance (Kay 1993). Strictly speaking, this is an isotropic transformation 

(Manolakis et al, 2000) because it produces unit-variance uncorrelated vectors.  

Denote with X(l,n) the sequence of time samples spaced Ts seconds apart each of which is 

obtained as 

 nn WVX = , (2.13) 

where Vn = [V(0,n), V(1,n), ..., V(L−1,n)]T  and Xn = [X(0,n), X(1,n), ..., X(L−1,n)]T. In 

general, the orthogonalization is not unique and many well-known methods could be 

applied to generate different whitened sequences. Two prominent methods to generate 

whitened sequences are the eigenvalue decomposition (Therrien 1992) and triangular 

decomposition, which is equivalent to Gram-Schmidt orthogonalization (Therrien 1992, 
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Papoulis 1984). 

In the eigenvalue decomposition method the eigenvalues λi of the correlation matrix CV 

are computed first and CV is represented as CV = U Λ U*T, where Λ is a diagonal matrix 

of eigenvalues, and U is the unitary transformation matrix whose columns are the 

eigenvectors of CV. Then, to obtain W, a diagonal matrix D with elements on the 

diagonal equal to λi
−1/2 is constructed and  

 1 T−= =W H DU . (2.14) 

The transformation in (2.14) is the Mahalanobis transformation (Tong 1995). 

Triangular (or Cholesky) decomposition is identical to Gram-Schmidt orthogonalization 

(Papoulis 1984). In this case, the correlation matrix decomposes as CV = H*HT, where the 

matrix H is a lower triangular matrix; hence, the whitening matrix (2.12) is also lower 

triangular.  A possible advantage of triangular H matrices is that whitening can proceed 

in a pipeline manner; that is, computations can start as soon as the first sample is taken 

and progress through subsequent samples. Non-triangular H matrices require presence of 

all data before computations can start.  

Regardless of the method selected to compute W, the application of the whitening 

transformation to a set of oversampled data (fixed n) is given by (2.13), or explicitly as 

 ∑
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=
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L

j
jl njVwnlX ;       l = 0, 1, …, L−1, (2.15) 

where wl,j are the entries of W = H−1. 
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2.5. Performance Analysis 

To prove the whitening property of the transformation defined by (2.12), let us apply the 

transformation matrix to the data as in (2.13) and compute the correlation for the random 

vector Xn as 

 TTT EE WVVWXXR nnnnX ][][ *** == . (2.16) 

Now, the correlation matrix of Vn is given by PCV, where ⎥
⎦

⎤
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L

l
ms lpP σ [see (2.6) 

and (2.8)] and W = H−1, then  

 , ][ ])[(][)( *** I)(HHHH)(HCHR 111
V

1
X PPP TTT === −−−−  (2.17) 

where I is the L-by-L identity matrix. 

By definition, Xn is white because its correlation is a diagonal matrix. Additionally, all 

components have identical variance because Rx is a scalar multiple of the identity matrix 

(I). In other words, ).()()( lPlR R
X δ=  Furthermore, as discussed before, the signals have 

Gaussian distributions hence the variables X(l,n) are independent for a fixed n. In 

conclusion, by applying the whitening transformation given by W to the oversampled 

weather signal V, we obtained a vector with uncorrelated components, each with the same 

mean power (P) as V. 

The presence of noise is inherent to every radar system, so it is of concern to analyze the 

performance of the whitening transformation under noisy conditions. Let V = VS + VN, 

where the subscripts ‘S’ and ‘N’ stand for signal and noise components, respectively. 

When applying the whitening transformation, both signal and noise are evenly affected, 
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therefore 

 NS WVWVWVX +== . (2.18) 

For simplicity, we dropped the subscript “n” that is used to indicate sample time. From 

(2.18), we can see that the signal is whitened and the noise, which was white prior to the 

whitening transformation, becomes colored. To gain more insight into this process, it is 

useful to decompose 
SVC  using eigenvalue decomposition. With this decomposition, the 

whitening transformation is given by (2.14). Then, the correlation matrix of X is 

 XR  ][ * TE XX=  

  * * *[ ]T T TE= D U V V UD  

  * ( )
S

T S N= +VDU C I UD  

  * *( )T TS N= Λ +DU U U I UD  

 1−+= ΛI NS , (2.19) 

where we used the fact that X=WV, W=DUT, U*TU = UU*T = I (since U is unitary), and 

by definition D is real, DD = Λ-1, and DΛD = I. The signal-to-noise ratio (SNR) for the 

l-th component of Xn is 

 ll N
SSNR λ= ;      l = 0, 1, ..., L−1, (2.20) 

where λl is the l-th eigenvalue of 
SVC . The partial SNR defined in (2.20) makes sense 

because the eigenvalues of a positive-definite, symmetric matrix are real and positive. 

Equation (2.20) indicates that the SNR for each component changes from the original 

SNR according to the magnitude of the corresponding eigenvalue. For λl > 1, the SNR of 

the whitened signal increases; otherwise, the noise gets enhanced. To quantify this noise-
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enhancing effect, compute the total average noise power as 
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It is a well-known fact that if { } 1
0

−
=

L
llλ are the eigenvalues of A, then { } 1
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eigenvalues of A−1 (Lütkepohl 1996). In addition, the trace of A satisfies the relationship 
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l lλ we could invert 
SVC  and then compute 

its trace so 
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where Ltr
S

/}{ 1−
VC  is defined as the noise-enhancement factor NEF. 

For a correlation matrix corresponding to (2.9) it is not very difficult to find a closed-

form solution for the previous equation. For this ideal case, the correlation matrix is 
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and it can be verified that  
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Then, 
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and thus (2.21) becomes 
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L
LNNw . (2.26) 

The previous equation shows that the noise its enhanced for L > 1 (which is always the 

case if there is oversampling). Therefore, for relatively small SNR, the variance reduction 

achieved by increasing L will be masked by a corresponding noise power boost.  

Figure 2.1 shows the noise enhancement factor in (2.26) obtained through simulations by 

measuring the power of white noise before and after the application of the whitening 

transformation. Figure 2.2 shows the noise power for whitened and correlated 

observations along the range-time axis. As expected, in the case of correlated samples the 

noise power is uniform and equal to the simulated noise power. On the other hand, the 

whitening transformation enhances the mean noise power by a factor of 9.0909, as 

predicted by (2.26). Observe that the noise power is redistributed (colored) in range so 

that the enhancement is different for each range component. Note, however, that this 

redistribution of noise along the range-time axis does not affect the spectral shape of the 

noise in the sample-time domain. That is, the noise is still white along sample time but its 

total power is a function of range. 
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Figure 2.1. Effects of whitening on the noise power level. The noise enhancing effect of the 
whitening transformation is plotted for oversampling factors from 2 to 10. The result of (2.26) is 

included to show the agreement between theory and simulations. 

The trade-off between noise enhancement and variance reduction makes the whitening 

transformation useful in cases of relatively large SNR. Although for weather radars the 

SNR of signals from storms is large, the formulation of the whitening transformation in 

effect ignores the presence of noise. As a consequence, its use under low SNR conditions 

will result in significant noise enhancement given by (2.21). 

An alternative is to relax the whitening requirements and select a transformation such 

that the output noise power is also minimized. A transformation that is optimized based 

on the minimum mean-square error (MMSE) criterion accomplishes the desired goal. The 
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analysis of this technique is deferred until Chapter 5. 

In the following two chapters we will focus on the application of the whitening 

transformation to the problem of efficient estimation of Doppler spectral moments and 

polarimetric variables. 

 

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

range lag (l)

N
oi

se
 p

ow
er

Noise power of the lth range component − Correlated signal

Component noise power
Noise mean power

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

range lag (l)

N
oi

se
 p

ow
er

Noise power of the lth range component − Whitened signal

N
w

 = 9.0909 N

Component noise power
Noise mean power

N 

 

Figure 2.2. Noise power of correlated (top) and whitened (bottom) observations along range time. 
Dashed lines are at the mean power levels for each case. The predicted enhancement factor of 

9.0909 (L = 10) is verified through simulations. 
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3. SPECTRAL MOMENT ESTIMATION 

This chapter covers the application of the whitening transformation to the estimation of 

the Doppler spectrum and its first three moments for weather signals. Whitening-

transformation-based (WTB) estimators of weather signal power, Doppler mean velocity, 

and Doppler spectrum width are discussed in detail. Special importance is given to the 

statistical performance (bias and variance) of the WTB estimators compared with the 

case in which the oversampled data are not whitened. Variance reduction factors are 

derived and theoretical developments are verified through computer simulations. 

3.1. Estimation of Signal Power  

Weather signal power, or the zeroth moment of the Doppler spectrum, can be related to 

liquid water content or precipitation rate in the resolution volume (Doviak and Zrnic 

1993). In this section the usual power estimator (1.23) is extended to handle oversampled 

signals. The simpler noiseless case is examined first, as the assumption of high SNR 

leads to compact and meaningful results. Further, weather radar signals from appreciable 

precipitation are typically much stronger than noise. The noisy case is studied next to 

make evident the noise-enhancing effect of the whitening transformation discussed in the 

previous chapter. In both cases, the performance of the power estimator is compared on 

whitened and correlated (non-whitened) samples. 

3.1.1. Noiseless Case 

3.1.1.1 Correlated Samples 

A straightforward extension of the usual power estimator applied to oversampled signals 
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is given by 
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where the subscript “corr” indicates that the power is derived from correlated (non-

whitened) samples. In (3.1) V(l,m) is the oversampled (correlated) weather signal, L is the 

oversampling factor, and M is the number of samples (pulses). This estimator is unbiased 

because 
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The variance of the estimator in (3.1) can be computed as  
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where the expectation operation in this expression can be simplified as  
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Introducing (3.4) into (3.3) produces 
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The two-dimensional autocorrelation function RV in (3.5) can be decomposed as the 
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product of the autocorrelation along range time )(R
VR  and the autocorrelation along 

sample time )(T
VR ; i.e., )()(),( )()( mRlRmlR T

V
R

VV = . In addition, by a change of variables 

(3.5) reduces to 
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where )(R
Vρ  and )(T

Vρ  are the correlation coefficients corresponding to )(R
VR  and )(T

VR , 

respectively. For a Gaussian sample-time correlation as in (1.1), the magnitude of the 

sample-time normalized correlation coefficient is  
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vnsv eem πσλπσρ −− == ,  (3.7) 

where σvn = 2σvTs/λ is the normalized spectrum width. With this assumption and for the 

usual range of the product Mσvn, the second summation in (3.6) can be approximated as 
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The first summation in (3.6) can be rewritten using the identity 
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where C1 and C2 are the correlation matrices corresponding to the correlation functions 

R1 and R2, respectively. Using (3.8) and (3.9), (3.6) reduces to 
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Recall that the normalized correlation matrix )(R
VC  is defined as the Toeplitz Hermitian 
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matrix of (2.10), and that )(R
Vρ , which depends on the transmitted pulse shape and 

receiver impulse response, is given in (2.8).  

An ideal transmitter/receiver system is defined as having a rectangular transmitter pulse 

envelope and an infinite-bandwidth receiver filter (consideration of a real system is 

deferred to Chapter 6). The correlation matrix corresponding to such system can be 

obtained from the correlation coefficient of (2.9). It is easy to show that 

2
1}][ {

2
2 )( +

=
Ltr R

VC  , hence, from (3.10) the normalized standard error for the ideal 

system is 
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For L = 1 (no oversampling), large M, and σvn << 1, (3.11) becomes equation (6.12) in 

Doviak and Zrnic (1993).  

3.1.1.2 Whitened Samples 

As before, the power estimator for oversampled signals is given by 
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however, in this case X(l,m) is the whitened oversampled weather signal obtained as 
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where wl,j are the entries of the whitening transformation matrix W. This estimator is 

unbiased, that is 
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because, as seen in (2.17), the whitening transformation preserves the total power of the 

original signal. 

The variance of the estimator in (3.12) can be computed as in Section 3.1.1.1 to get a 

expression similar to (3.10); i.e., 
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The normalized correlation matrix in (3.15) can be computed by recalling that due to the 

whitening transformation X = WV, then 
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 and the data is whitened along range, as expected. Therefore, Ltrtr R == }{}][ { 2 )( ICX ,  
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and the normalized standard deviation [compare with (3.11)] is 
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3.1.1.3 Comparison 

Figure 3.1 shows the fractional standard deviation for both correlated and whitened data 

as a function of the oversampling factor L. The fractional standard error in dB, which can 

be computed as 10log10[1 + SD(Ŝ)/S], is a quantity often used to assess or specify the 
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performance of power estimators. It is evident from this figure that the larger the 

oversampling factor, the better the performance of the WTB estimator. In this regard, the 

variance reduction factor (VRF) for the WTB power estimator can be computed as 
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which for the ideal case reduces to 
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Figure 3.1. Fractional standard deviation for correlated and whitened data as a function of the 
oversampling factor L for the ideal case. The number of samples M is 32, the normalized 

spectrum width σvn is 0.08, and the SNR is very large. Both theoretical results (dashed line) and 
simulation results (solid line) are plotted. 
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As expected, the VRF of the WTB power estimator is an increasing function of the 

oversampling factor. An interesting question arises: What is the required number of 

samples for the power WTB estimator that yields the same errors as the regular power 

estimator assuming that both use the same oversampling factor and that the regular 

estimator uses Mcorr samples? Equating (3.10) and (3.17) with Mcorr and Mwhitened 

samples, respectively, the following useful relation is obtained for the ideal case 
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that is, approximately L/2 fewer samples are required by a WTB signal power estimator 

in order to preserve the performance of the power estimator on correlated data. 

3.1.2. Noisy Case 

3.1.2.1 Correlated Samples 

The signal power estimator for oversampled signals in the presence of additive noise is 

given by 
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where N is the noise power and, as before, V(l,m) is the oversampled weather signal, L is 

the oversampling factor, and M the number of samples (pulses). This estimator is 

unbiased because 
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The variance of the estimator in (3.22) can be computed as  



45 

 [ ]−= ∑∑∑ ∑
−

=

−

=

−

=

−

=

1

0

1

0

1

0'

1

0'

**
22 )','()','(),(),(1}ˆ{

L

l

M

m

L

l

M

m
corr mlVmlVmlVmlVE

ML
SVar  

 [ ] , ),( 2 2
1

0

1

0

22 SNmlVE
LM

N L

l

M

m
∑∑

−

=

−

=

−+−  (3.24) 

where the expectation operation in this expression can be simplified analogously as in 

Section 3.1.1 to get  
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The autocorrelation of V(l,m), RV, can be decomposed into a sum of the autocorrelation of 

the signal 
SVR and the autocorrelation of the noise 

NVR . In addition, as shown in Section 

3.1.1, each two-dimensional autocorrelation function can be written as the product of the 

corresponding autocorrelation along range time [indicated by the superscript (R)] and 

autocorrelation along sample time [indicated by the superscript (T)], i.e., 
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+=+= . By doing a change of 

variables in (3.26), the variance of power estimates on correlated samples becomes 
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For a Gaussian sample-time correlation as in (1.1) and white noise the following applies: 
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Hence, by using (3.8) and (3.9), (3.27) reduces to 
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From the previous expression, the normalized standard deviation is 
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further, for the correlation matrix corresponding to the ideal system, 
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For L = 1 (no oversampling), large M, and σvn << 1, (3.33) is equivalent to equation (3) in 
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Sachidananda and Zrnic (1985). 

Figure 3.2 shows the normalized standard error of power estimates (3.22) versus the 

normalized spectrum width for several SNRs for the ideal case. It is evident from this 

plot that results of simulations and theory are in good agreement.  
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Figure 3.2. Normalized standard error for the power estimates on correlated data versus the 
normalized spectrum width σvn with the SNR as a parameter for the ideal case. The oversampling 
factor L is 8. Both theoretical results (dashed line) and simulation results (solid line) are plotted. 

3.1.2.2 Whitened Samples 

The power estimator for oversampled whitened signals in noise is given by 
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where NEF is the noise-enhancement factor as defined in (2.22), and X(l,n) is the 

whitened oversampled weather signal as in (3.13). 
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The estimator in (3.34) is unbiased because 
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as the whitening transformation preserves the total signal power and  increases the noise 

power by the noise-enhancement factor. 

The variance of the estimator in (3.34) can be computed as in Section 3.1.2.1 to get an 

expression like (3.27): 
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For a Gaussian sample-time correlation )()( mT
X S

ρ  is as in (3.28), and for white 

noise )()()( mmT
VN

δρ = . In addition, by using (3.8) and (3.9) 

 2

2 )(2

2

)()(

2

2 )(2 }][ {}{2 
}][ {

2
}ˆ{

L
tr

M
N

L
tr

M
NS

L
tr

M
SSVar

RRRR

vn
whitened

NNSS XXXX CCCC
++=

πσ
. (3.37) 

Due to the presence of additive noise, the whitened signal X can be decomposed into two 

components corresponding to the signal and noise contributions. That is,  

 X = XS + XN = WVS + WVN.  (3.38) 

Therefore, the correlation matrix for the whitened signal along range time is 
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 and the data is whitened along range, as expected. On the other hand, for the noise that 

was originally white 
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and the fractional standard deviation becomes 
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For the correlation matrix corresponding to the ideal system and L greater than one2, it is 

not difficult to show that 
1

}][ {
3

1 )(

+
=

L
Ltr -R

SVC  and 2

23
2 )(

)1(2
)323(}][ {

+
−+

=
L

LLLtr -R
SVC , 

therefore (3.42) reduces to 

 
2/12

2

2

)1(2
)323(

)1(
2

2
11}ˆ{

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
−+

+⎟
⎠
⎞

⎜
⎝
⎛

+
+=

S
N

L
LLL

S
N

L
L

LMS
SSD

vn

whitened

πσ
. (3.43) 

Figure 3.3 shows the normalized error of power estimates (3.34) versus the normalized 

                                                 

2 For the case of L = 1, the normalized correlation matrix reduces to a scalar, i.e., CVs = 1 and 
tr{[CVs]−1} = tr{[CVs]−2} = 1. These results do not agree with the general formulas for 
tr{[CVs]−1} and tr{[CVs]−2} as functions of the oversampling factor L; however, the case L = 1 is 
meaningless as it implies no oversampling. Throughout the reminder of this dissertation L > 1 is assumed 
unless otherwise noted. 
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spectrum width for several values of SNR for the ideal case. The agreement between 

theory and simulations is again evident from these plots. By comparing the results in 

Figure 3.3 to the ones in Figure 3.2 the noise-enhancement effect discussed in Chapter 2 

becomes evident. The increase in the standard deviation of power estimates on whitened 

samples for low values of SNR compared to the results on correlated data is an indication 

of this phenomenon. Whitened samples exhibit an effective SNR equivalent to the 

original SNR reduced by the noise-enhancement factor NEF defined in (2.22). 
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Figure 3.3. Normalized standard error for the power estimates on whitened data versus the 
normalized spectrum width σvn with the signal-to-noise ratio (SNR) as a parameter for the ideal 

case. The oversampling factor L is 8. Both theoretical results (dashed line) and simulation results 
(solid line) are plotted. 

 



51 

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

M
1/

2  
SD

 [
Ŝ]
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Figure 3.4. (Top) Standard deviation for the power estimator on both correlated and whitened 
data as a function of the signal-to-noise ratio (SNR) for the ideal case. The oversampling factor L 
is 8, the normalized spectrum width σvn is 0.08. (Bottom) Variance reduction factor for the same 
parameters. Theoretical results (dashed line) and simulation results (solid line) are plotted in both 

cases. 
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3.1.2.3 Comparison 

Figure 3.4 (top) shows the normalized standard deviation for both correlated and 

whitened data as a function of the signal-to-noise ratio where it is evident that the 

performance of the WTB estimator worsens as the SNR decreases due to the noise-

enhancement effect inherent to the whitening transformation. As in Section 3.1.1.3, the 

variance reduction factor (VRF) for the WTB power estimator can be computed as 
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which for the ideal case turns into 
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Simulation results agree with (3.45) as shown in Figure 3.4 (bottom). It is of practical 

significance to determine the value of SNR for which the variance of power estimates 

obtained from whitened samples is equal to the variance of power estimates from 

correlated samples (see Figure 3.4). This is because WTB estimators should be utilized 

only for SNRs greater than or equal to SNRc. By definition, the crossover point SNRc is 

found by equating the VRF to one: 
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For the parameters of Figure 3.4, the solution to (3.46) is SNRc = 5.24 dB, which agrees 

with the results in that figure.  
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It is interesting to note that the crossover SNR depends only on the normalized spectrum 

width for a given oversampling factor and not on the number of samples M. Solving for 

SNRc in the quadratic equation (3.46)  

 vnvnvncSNR γσβσασ ++= 2 , (3.47) 

where α, β, and γ are constants that depend only on the oversampling factor L. Therefore, 

the crossover SNR is directly proportional to the normalized spectrum width, so the 

larger the spectrum width, the less “useful” the WTB estimator. This is because weather 

signals look more like white noise as the spectrum width increases, and the noise-

enhancing effect becomes more pronounced with noisy signals. In other words, for larger 

spectrum widths it takes an even larger SNR for the WTB estimator to start performing 

better than the one operating on correlated samples.  
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Figure 3.5. Crossover signal-to-noise ratio SNRc versus the normalized spectrum width for the 
power estimator in an ideal system. The oversampling factor L is 8. 
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Figure 3.5 shows the crossover SNR as a function of the normalized spectrum width for 

the ideal case. 

3.2. Estimation of Mean Doppler Velocity 

Mean Doppler velocity or the first moment of the Doppler spectrum is essentially the 

average air motion toward or away from the radar along the direction of the beam. As 

discussed in Section 1.3, the pulse-pair estimator in (1.30) calculates the Doppler velocity 

from estimates of the autocorrelation function at lag Ts (i.e., lag one). In what follows that 

estimator is extended to oversampled data of correlated and whitened samples. 

3.2.1. Correlated Samples 

The mean Doppler velocity estimator applied to oversampled correlated data is 
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where lag-one sample-time autocorrelation function for the oversampled correlated signal 

V(l,n) is estimated as 
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Because (3.49) is an asymptotically unbiased estimator of the autocorrelation for lag one, 

the Doppler velocity estimator in (3.48) is also asymptotically unbiased. Perturbation 

analysis is useful to compute the variance of nonlinear estimators such as (3.48). 

Assumptions for the validity of the perturbation analysis are that the probability densities 

of the estimates are smooth functions close to the mean and that the perturbations are not 
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excessive. Under these conditions it can be proved (Zrnic 1977) that  

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

)(

)(2

)(

)(2

)1(
)1(ˆ

)1(
)1(ˆ

Re
2
1

4
}ˆ{ T

V

T
V

T
V

T
V

s
corr R

RE
R
RE

T
vVar

π
λ . (3.50) 

Using a similar analysis as in Section 3.1, the expectation operations inside (3.50) can be 

computed as 
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 As discussed in Section 3.1.2, the autocorrelation of V(l,n) can be decomposed as 
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and with the assumptions of Gaussian sample-time autocorrelation and white noise the 

following applies: 
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Using (3.8), (3.9) and the previous results (3.50) reduces to 
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For L = 1, large M, and σvn << 1, (3.57) is equivalent to equation (6.21) of Doviak and 

Zrnic (1993) for the case of T = Ts. For the ideal case, the normalized standard deviation 

can be obtained from (3.57) as 
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where va = λ/4Ts  is the maximum unambiguous Doppler velocity. 

Figure 3.6 shows the normalized standard deviation of Doppler velocity estimates (3.48) 

versus the normalized spectrum width for the ideal case and several values of SNR. 

Theoretical results are verified through simulations as in the previous cases. However, it 

is important to note that perturbation analysis results are accurate only if 
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which is why theoretical curves do not match the results obtained from simulations very 

well when the spectrum width is small or the SNR is too low. 

 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.05

0.1

0.15

0.2

0.25

(M
 −

 1
)1/

2  
SD

[v̂
/2

v a
]

Normalized spectrum width, σ
vn

Normalized standard error − Mean Doppler velocity estimator − L = 8

SNR = −3 dB

SNR = 0 dB

SNR = 20 dB

Simulation results
Theoretical results

 

Figure 3.6. Normalized standard deviation of Doppler velocity estimates on correlated data versus 
the normalized spectrum width with the SNR as a parameter for the ideal case. The oversampling 
factor L is 8. Both theoretical results (dashed line) and simulation results (solid line) are plotted. 

3.2.2. Whitened Samples 

The mean Doppler velocity estimator applied to oversampled whitened data is 

 { } )1(ˆ arg
4

ˆ )(T
X

s
whitened R

T
v

π
λ

−= , (3.61) 

where the lag-one sample-time autocorrelation function for the oversampled whitened 

signal X(l,n) is estimated as 
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For the same reasons as before, the Doppler velocity estimator in (3.61) is asymptotically 

unbiased, and its variance is given by  
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Using a similar analysis as in Section 3.2.1 it is possible to obtain the variance of Doppler 

velocity estimates as 
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For the ideal case, the normalized standard deviation can be obtained using the identities 

of Section 3.1.2.2 from (3.64) as 
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Figure 3.7 shows the normalized standard deviation of Doppler velocity estimates (3.61) 

versus the normalized spectrum width for the ideal case and several values of SNR. 

Theoretical results are verified through simulations with the exceptions as noted in 

Section 3.2.1 pertaining to the conditions for the validity of the perturbation analysis. 
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Figure 3.7. Normalized standard deviation of Doppler velocity estimates on whitened data versus 
the normalized spectrum width with the SNR as a parameter for the ideal case. The oversampling 
factor L is 8. Both theoretical results (dashed line) and simulation results (solid line) are plotted. 

3.2.3. Comparison 

Comparison between the results in Figure 3.6 and Figure 3.7 reveals significant 

improvement (reduction) of standard deviation for the WTB Doppler velocity estimator 

at large SNR (20 dB). However, for lower SNR, processing of correlated samples 

produces better estimates, as expected. Note that the SNR of −3 dB for correlated 

samples give similar errors as an SNR of 5 dB for whitened samples. 

As in the case of the signal power estimator, the WTB Doppler velocity estimator 

worsens as the SNR decreases due to the noise-enhancement effect. The variance 

reduction factor (VRF) for the WTB velocity estimator can be computed as 
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which for the ideal case reduces to 
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Figure 3.8. Crossover signal-to-noise ratio SNRc versus the normalized spectrum width for the 
mean Doppler velocity estimator and an ideal system. The oversampling factor L is 8. 

Equation (3.67) is useful to determine the crossover point SNRc for a given oversampling 

factor and normalized spectrum width. Figure 3.8 shows the crossover SNR as a function 

of the normalized spectrum width for the ideal case, where it is interesting to note that the 

relation between SNRc and σvn is not the same as the one in Figure 3.5 due to the different 

nature of the Doppler velocity estimator. Therefore, for some moderate SNR 

(approximately less than 12 dB) whitening may be effective for power estimation but not 

for velocity estimation. 
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3.3. Estimation of Doppler Spectrum Width 

Doppler spectrum width or the square root of the second central moment of the spectrum 

is a measure of the velocity dispersion, that is, shear or turbulence within the resolution 

volume. As discussed in Section 1.3, the pulse-pair estimator calculates the Doppler 

spectrum width from estimates of the signal power and the autocorrelation function at lag 

Ts (lag one) as in (1.31). In what follows that estimator is extended to deal with 

oversampled data from correlated and whitened samples. 

3.3.1. Correlated Samples 

The Doppler spectrum width estimator applied to oversampled correlated samples is 
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where corrŜ and )1(ˆ )(T
VR are given in equations (3.22) and (3.49), respectively. 

Due to the statistical performance of the estimators (3.22) and (3.49), the Doppler 

spectrum width estimator in (3.68) is asymptotically unbiased. As with the mean Doppler 

velocity, perturbation analysis is useful to compute the variance of spectrum width 

estimates. It can be proved (Zrnic 1977) that  
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Using a similar analysis as in Section 3.2, the expectation operations inside (3.69) can be 
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computed as 
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As previously discussed, the autocorrelation of V(l,n) can be decomposed into signal and 

noise parts as 
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and with the assumptions of Gaussian sample-time autocorrelation and white noise we 

have that   
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where the normalized velocity vn is defined as vn = v/2va.  Using (3.8) and (3.9), equation 

(3.69) becomes 
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For L = 1, large M, and σvn << 1, (3.77) is equivalent to equation (6.30a) of Doviak and 

Zrnic (1993) for the case of T = Ts.  

For the ideal case, the normalized standard deviation can be obtained from (3.77) as 
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Figure 3.9 shows the normalized standard deviation of Doppler spectrum width estimates 

(3.68) versus the normalized spectrum width for the ideal case and several values of 

SNR. Theoretical results are verified through simulations with the exceptions noted in 

Section 3.2 regarding the limitation of perturbation analysis. 
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Figure 3.9. Normalized standard deviation of Doppler spectrum width estimates on correlated 
data versus the normalized spectrum width with the SNR as a parameter for the ideal case. The 
oversampling factor L is 8. Both theoretical results (dashed line) and simulation results (solid 

line) are plotted. 

3.3.2. Whitened Samples 

The Doppler spectrum width estimator applied to oversampled whitened data is 
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where whitenedŜ and )1(ˆ )(T
XR are given in equations (3.34) and (3.62), respectively. 

Due to the statistical performance of the estimators (3.34) and (3.62), the Doppler 

spectrum width estimator in (3.79) is asymptotically unbiased. As in Section 3.3.1, it can 

be proved that  
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which can be simplified using the same procedure as in the previous section to  
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For the ideal case, the normalized standard deviation can be obtained from (3.81) using 

the identities in Section 3.1.2.2 as 
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Figure 3.10 shows the normalized standard deviation of Doppler spectrum width 

estimates (3.79) versus the normalized spectrum width for the ideal case and several 

values of SNR. Theoretical results are verified through simulations with the exceptions as 

discussed in Section 3.2.1. 

3.3.3. Comparison 

Comparison between the results in Figure 3.9 and Figure 3.10 reveals significant 

improvement (reduction) of standard deviation for the WTB spectrum width estimator at 
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large SNR (20 dB). However, for lower SNR, processing of correlated samples produces 

better estimates, as expected. Note that a SNR of 0 dB for correlated samples give similar 

errors as an SNR of 10 dB for whitened samples. 
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Figure 3.10. Normalized standard deviation Doppler spectrum width estimates on whitened data 
versus the normalized spectrum width with the SNR as a parameter for the ideal case. The 

oversampling factor L is 8. Both theoretical results (dashed line) and simulation results (solid 
line) are plotted. 

It is expected once again that the performance of the WTB Doppler spectrum width 

estimator worsens as the SNR decreases due to the noise-enhancement effect. As in the 

previous sections, the variance reduction factor (VRF) for the WTB spectrum width 

estimator can be computed as  
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which for the ideal case reduces to 
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Figure 3.11. Crossover signal-to-noise ratio SNRc versus the normalized spectrum width for the 
Doppler spectrum width estimator and an ideal system. The oversampling factor L is 8. 

The previous equation is useful to determine the crossover point for a given 

oversampling factor and normalized spectrum width. Figure 3.11 shows the crossover 

SNR as a function of the normalized spectrum width for the ideal case, where the relation 

between SNRc and σvn is inverse for the usual range of spectrum widths. This means that 
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the range of SNR where the WTB spectrum width estimator is preferred becomes larger 

for broader spectrum widths. 

3.4. Estimation of Doppler Spectrum 

The power spectrum of weather signals, often referred to as the Doppler spectrum 

(Doviak and Zrnic 1993), is a power-weighed distribution of the radial velocities of the 

scatterers in the resolution volume. The three first spectral moments can be estimated 

using either a few lags of the weather signal autocorrelation function, as with the pulse-

pair algorithm, or using the Doppler spectrum by applying so-called spectral processing 

methods. The primary difference between these two approaches is that the information 

concerning the lower spectral moments is distributed over several frequencies of the 

power spectrum, while it is concentrated in the small lags of the sample-time 

autocorrelation function. The advantage of measuring the full Doppler spectrum is that 

factors that tend to produce spectral artifacts, such as point scatterers, ground clutter, bi-

modal spectra, and others, can be recognized and dealt with appropriately by using 

intuitive algorithms.  

The Doppler power spectrum may be estimated from the Discrete Fourier Transform 

(DFT) of the complex weather signal V as  
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A straightforward extension of this estimator to accommodate oversampled signals is 

(Urkowitz and Katz 1996) 
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for correlated samples and  
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for whitened samples. 

Equations (3.86) and (3.87) can be rewritten as  
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and 
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respectively. In (3.88) and (3.89), Z(l,k) is the DFT along the sample-time axis of the 

correlated or whitened l-th oversampled component of the weather signal. That is, 
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where wi,j are the entries of the whitening transformation matrix. In other words, the 

Doppler spectrum is found by averaging spectral coefficients obtained from either 

correlated or whitened samples. Since the DFT is a linear operation, it follows that 

estimates originating from whitened samples will achieve lower errors compared to the 
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estimates from correlated (non-whitened) data. 

Another equivalent approach to estimating the Doppler spectrum using a WTB estimator 

consists of moving the whitening stage one step further into the processing chain. The 

whitening transformation is then applied to the complex Fourier coefficients instead of 

the oversampled weather signal. That is, 
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where wi,j are the entries of a whitening transformation for the complex Fourier 

coefficients and Zcorr is defined in (3.90). This method will be discussed with more detail 

in Chapter 5. 

A similar analysis as in the previous sections can be carried out for these estimators; 

however, such deeper analysis of the WTB Doppler spectrum estimator is beyond the 

scope of this dissertation. 

3.5. Results 

Sections 3.1 through 3.4 discussed the application of the whitening transformation to the 

estimation of the Doppler spectrum and its moments. Estimators operating on whitened 

signals were termed whitening-transformation-based (WTB) estimators, and they exhibit 

reduced standard errors if the signal-to-noise ratio is relatively large.  

A performance comparison of all WTB estimators with estimators on correlated data for 

the ideal case showed that for all the variables the variance reduction factor for large 

SNR is  
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where L is the oversampling factor. That is, approximately L/2 fewer samples are needed 

for WTB estimators to keep the same errors as the ones obtained without the aid of the 

whitening transformation.  

For low SNR the performance of all WTB estimators deteriorates as the noise-enhancing 

effect discussed in Section 2.5 becomes important. In such cases, the estimates on non-

whitened data result in better performance; the rule for selecting the best estimate is 

given by 
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In equation (3.94), θ is any of the variables discussed in this chapter, namely S, v, or σv, 

and SNRc is the crossover SNR defined as the SNR that conduces to a variance reduction 

factor of one. Theoretical expressions for the variance of estimates as derived in the 

previous sections become useful if one needs to compute the value of SNRc for a given 

variable under specific conditions without the need of simulations (see Figures 3.5, 3.8, 

and 3.11). Under appropriate limiting conditions, these expressions agree with the ones 

available in the literature. Finally, it is interesting to observe that the SNRc as functions of 

σvn for velocity and spectrum width estimates have similar behaviors (Figures 3.8 and 

3.11), but differ from the one for power estimates (Figure 3.5) due to the dissimilar 

nature of the estimators. 
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4. POLARIMETRIC VARIABLE ESTIMATION 

One of the evolutionary enhancements planned for the national network of weather radars 

(NEXRAD) is the addition of a polarimetric capability to improve rainfall estimation and 

to identify precipitation types; e.g., to distinguish rain from hail, snow, etc. (Doviak et al., 

2000). This chapter covers the application of the whitening transformation to the 

estimation of polarimetric variables, namely the differential reflectivity, the total 

differential phase shift, and the magnitude of the cross-correlation coefficient at lag zero. 

Special emphasis is given to the statistical performance of WTB estimators compared 

with estimators that do not employ a whitening transformation. Variance reduction 

factors are derived, and theoretical developments are verified through computer 

simulations. The analysis in this chapter is for simultaneous transmission and reception 

of horizontally and vertically polarized signals [see for example Scott et al. (2001)]. 

Nonetheless, the same principle is applicable to alternate (switched) transmissions and 

receptions (Doviak et al., 2000). Because the antenna scan rate is a function of the rate at 

which samples can be acquired and the number of samples required for a given accuracy, 

it is demonstrated that WTB estimators allow for faster antenna rotation rates compared 

to regular estimators for the same accuracy in the meteorological fields. This is of special 

significance for the polarimetric variables. 

4.1. Estimation of Differential Reflectivity 

As discussed in Section 1.3, the differential reflectivity ZDR is the ratio of reflected 

horizontal and vertical power returns. Capability of dual polarized radars to estimate 
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rainfall rate with better accuracy via differential reflectivity measurement has been well 

established (Aydin et al. 1990). In addition, ZDR makes identification of hail possible 

(Zrnic and Ryzhkov 1999). However, one of the problems with ZDR measurement has 

been its relatively long acquisition time because accurate rainfall rate estimation requires 

ZDR fractional errors less than 0.1 dB; hence, more samples and thus a slower antenna 

rotation rate is necessary. It is shown in this section that WTB estimators of ZDR achieve 

the required small errors with fewer samples than the usual estimator; therefore, faster 

scan rates are possible without degradation in the accuracy of ZDR estimates. 

4.1.1. Correlated Samples 

The differential reflectivity estimator applied to oversampled correlated samples is 
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In (4.2) and (4.3) VH, VV, NH, and NV are the oversampled correlated signals and noise 

corresponding to the horizontal (H) and vertical (V) channel, respectively. For most 

practical situations it can be assumed that noise powers in the horizontal and vertical 

channels are equal; hence NH = NV = N will be assumed throughout the reminder of this 

chapter.  
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Perturbation analysis to compute the variance of differential reflectivity estimates  

(Sachidananda and Zrnic 1985) results in  
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The first two terms inside (4.4) can be computed from (3.27) by substituting SH or SV for 

S, respectively. The covariance term in (4.4) is computed as 
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Throughout this analysis it is assumed that the cross-coupling between horizontal and 

vertical channels is negligible, which is true for any well-designed system. Therefore, the 

cross-correlation between the noise in the horizontal and vertical channels is zero. 

Further, using the same reasoning as Sachidananda and Zrnic (1985), the two-

dimensional autocorrelation function 
VHVVR  can be decomposed as 

 )()()0(),(),( )()( mlSSmlSSmlR T
V

R
VHVVHVVVHVV SSVHVH

ρρρρ == . (4.7) 

With the assumptions of Gaussian sample-time autocorrelation and white noise as in 

Chapter 3, (4.4) reduces to 
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The previous equation is equivalent to equation (7) of Sachidananda and Zrnic (1985) if 

L = 1, NH = NV, Nc = 0, M is large, and σvn << 1. For the ideal case, the normalized 

standard deviation can be obtained from (4.8) as 
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Figure 4.1. Normalized standard deviation of differential reflectivity estimates on correlated data 
versus the normalized spectrum width with the correlation coefficient |ρHV(0)| as a parameter for 
the ideal case. The oversampling factor L is 8 and the SNR is very large. Both theoretical results 

(dashed line) and simulation results (solid line) are plotted. 

Figure 4.1 shows the normalized standard deviation of differential reflectivity estimates 

(4.1) versus the normalized spectrum width for the ideal case. Curves are plotted for 

several values of |ρHV(0)|, where a correlation coefficient of 0.98 is representative of pure 
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rain, and |ρHV(0)| = 0.9 is typical of hail (Straka et al., 2000). It is evident from this plot 

that theoretical results are in good agreement with simulations. 

4.1.2. Whitened Samples 

The differential reflectivity estimator applied to oversampled whitened samples is 
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In (4.11) and (4.12) XH and XV are the oversampled whitened signals corresponding to the 

horizontal and vertical polarizations, respectively; NEF is the noise enhancement factor 

as defined in (2.22). 

Analogously as in the previous section, the variance of the estimator in (4.10) is 
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The first two terms inside (4.13) can be computed from (3.36) by substituting SH or SV for 

S, respectively. The covariance term in (4.13) is computed as in (4.5). With the result of 

(3.40) and the usual assumptions, (4.13) reduces to 



77 

{ } ( )
⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

−
=

−

H

R

DR
vn

HVDR
DR S

N
L

tr
Z

LM
ZZVar S

whitened 2

1 )(22 }][ {
121)0(1ˆ VC

πσ
ρ

 

 ( ) .  
}][  {

1
2

2

2 )(
2

⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−

H

R

DR S
N

L
tr

Z SVC
 (4.14) 

For the ideal case, the normalized standard deviation can be obtained from (4.14) as 
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Figure 4.2. Normalized standard deviation of differential reflectivity estimates on whitened data 
versus the normalized spectrum width with the correlation coefficient |ρHV(0)| as a parameter for 
the ideal case. The oversampling factor L is 8 and the SNR is very large. Both theoretical results 

(dashed line) and simulation results (solid line) are plotted. 
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Figure 4.2 shows the normalized standard deviation of differential reflectivity estimates 

versus the normalized spectrum width for the ideal case and several values of |ρHV(0)|. It 

is evident from this plot that theoretical results are in good agreement with simulations 

once again. 
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Figure 4.3. Crossover signal-to-noise ratio SNRc versus the normalized spectrum width for the 
differential reflectivity estimator and an ideal system using the actual differential reflectivity 

(ZDR) as a parameter. The oversampling factor L is 8 and the magnitude of the cross-correlation 
coefficient |ρHV(0)| is 0.98. 

4.1.3. Comparison 

Comparison between the results in Figure 4.1 and Figure 4.2 reveals significant 

improvement (reduction) of standard deviation for the WTB differential reflectivity 

estimator at large SNR. However, for lower SNRs we expect the noise-enhancement 

effect to begin dominating and consequently deteriorating the performance of the WTB 

estimator. The crossover SNR (SNRc) is a good indicator of this effect and is plotted in 

Figure 4.3 as a function of the normalized spectrum width for several values of ZDR. 
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Differential reflectivity values between 1 dB and 4 dB are typical in rain (Straka et al., 

2000). 

4.2. Estimation of Differential Phase 

The differential phase is a comparison of the returned phase difference between the 

horizontal and vertical pulses where both backscattering and propagation effects are 

included. Mathematically, arg{ρHV(0)} = φDP(1−2σΨ
2) – δl, where φDP is the differential 

phase due to propagation, σΨ
2 is the variance of the canting angle (i.e., the angle between 

the incident electric field and the projection of the axis of symmetry on the plane of 

polarization) of particles along the propagation path, and δl is the intrinsic differential 

phase. However, in most cases of interest (e.g., uniform rain) φDP >> δl and σΨ is very 

small, so arg{ρHV(0)} ≈ φDP represents propagation effects only. Although ZDR 

measurements result in better rainfall rate estimates, Seliga and Bringi (1978) suggested 

that the differential propagation phase shift φDP as another polarimetric variable that 

could be used in a similar manner as ZDR to estimate rainfall rates. Their theoretical 

analysis showed that the use of φDP results in more accurate rainfall rate estimates when 

the estimates errors are kept below one degree. Differential phase may also prove to be 

very useful in hydrometeor type identification (Zrnic and Ryzhkov 1999). It is shown in 

this section that WTB estimators of φDP achieve the required errors with fewer samples 

than the regular φDP estimator, therefore resulting in the same advantages as discussed for 

the differential reflectivity. 
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4.2.1. Correlated Samples 

The differential phase estimator applied to oversampled correlated samples is 
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In (4.17) VH and VV are the oversampled correlated signals corresponding to the 

horizontal and vertical channels, respectively. 

Perturbation analysis can be used to compute the variance of differential phase estimates 

as (Ryzhkov and Zrnic 1998) 
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Using a similar technique as in previous derivations, the expectation operations inside 

(4.18) can be computed as 
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Autocorrelation functions inside the summations in (4.19) can be decomposed as in 

(3.53), and cross-correlation functions inside the summations in (4.20) as in (4.7). With 

the typical assumptions of Gaussian sample-time autocorrelation and white noise, (4.18) 

reduces to 
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For the ideal case the standard deviation expressed in degrees can be obtained from 

(4.21) as 
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Equation (4.22) is equivalent to (A18) of Ryzhkov and Zrnic (1988) if L = 1, the SNR is 

very large, M is large, and σvn << 1. 

Figure 4.4 shows the normalized standard deviation of differential phase estimates (4.16) 

versus the normalized spectrum width for the ideal case and several values of |ρHV(0)|. 

Once again, theoretical results are in good agreement with simulations. 
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Figure 4.4. Normalized standard deviation of differential phase estimates on correlated data 
versus the normalized spectrum width with the correlation coefficient |ρHV(0)| as a parameter for 
the ideal case. The oversampling factor L is 8 and the SNR is very large. Both theoretical results 

(dashed line) and simulation results (solid line) are plotted. 

4.2.2. Whitened Samples 

The differential phase estimator applied to oversampled whitened samples is 

 { })0(ˆargˆ )(T
XXDP VHwhitened

R=φ , (4.23) 

where 
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In (4.24) XH and XV are the oversampled whitened signals corresponding to the horizontal 

and vertical channels, respectively. 

Analogously as in the previous section, the variance of the estimator in (4.23) is 
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The expectation operations inside (4.25) can be computed as in the previous section, 

where XH and XV are used instead of VH and VV, respectively. Then, with the typical 

assumptions (4.25) reduces to 
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For the ideal case the standard deviation in degrees can be obtained from (4.26) as 
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Figure 4.5 shows the normalized standard deviation of differential phase estimates (4.23) 

versus the normalized spectrum width for the ideal case and several values of |ρHV(0)|. As 

observed before, theoretical results are in good agreement with simulations. 
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Figure 4.5. Normalized standard deviation of differential phase estimates on whitened data versus 
the normalized spectrum width with the correlation coefficient |ρHV(0)| as a parameter for the 
ideal case. The oversampling factor L is 8 and the SNR is very large. Both theoretical results 

(dashed line) and simulation results (solid line) are plotted. 

4.2.3. Comparison 

Comparison between the results in Figure 4.4 and Figure 4.5 reveals significant reduction 

of errors for the WTB differential phase estimator at large SNR. However, for lower 

SNRs the noise-enhancement effect begins to dominate and consequently deteriorates the 

performance of the WTB estimator. As discussed in the previous section, the crossover 

SNR (SNRc) is a good indicator of this effect and is plotted in Figure 4.6 as a function of 

the normalized spectrum width for several values of ZDR. It is interesting to observe that 

SNRc for φDP is almost the same as SNRc for ZDR at ZDR = 1 dB and only slightly lower at 

ZDR = 4 dB (compare Figures 4.3 and 4.6). 
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Figure 4.6. Crossover signal-to-noise ratio SNRc versus the normalized spectrum width for the 
differential phase estimator and an ideal system using the differential reflectivity (ZDR) as a 

parameter. The oversampling factor L is 8 and the magnitude of the cross-correlation coefficient 
|ρHV(0)| is 0.98. 

 

4.3. Estimation of the Magnitude of the Cross-Correlation Coefficient 

The cross-correlation coefficient ρHV is the normalized correlation between the reflected 

horizontal and vertical voltage returns. At lag zero, the magnitude of ρHV is a good 

indicator of regions where there is a mixture of precipitation types, such as rain and 

snow. The magnitude of the cross-correlation coefficient for lag zero, loosely referred to 

in the literature as simply the “cross-correlation coefficient”, depends on the shape, 

oscillation, wobbling, and canting angle distribution of hydrometeors (Sachidananda and 

Zrnic 1985). This polarimetric variable has been recently investigated for application to 
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hail sizing, improving polarization estimates of rainfall, and detection of melting level in 

both convective and stratiform precipitation (Liu et al. 1994). It is shown next that WTB 

estimators of |ρHV(0)| achieve small errors with fewer samples than classical estimators, 

resulting in the same advantages as discussed for the previous variables. 

4.3.1. Correlated Samples 

The cross-correlation coefficient estimator applied to oversampled correlated samples is 
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In (4.29), (4.30), and (4.31) VH and VV are the oversampled correlated signals 

corresponding to the horizontal and vertical channels, respectively. As before, N is the 

noise power in horizontal and vertical channels. 

Perturbation analysis can be used to compute the variance of cross-correlation coefficient 

estimates (Liu et al. 1994) as  
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The expectation operations in (4.32) are computed below: 
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where the first term on the right-hand side of (4.33) is given in (4.20). 
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where the first term on the right-hand side of (4.34) is given in (4.19). 
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In addition, 
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equations (4.5) and (4.6). With the usual assumptions (4.32) reduces to 
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An analytic expression for the variance of |ρHV(0)| for simultaneous transmission has not 

been found in the literature; though Liu et al. (1994) provide similar results for the case 

of alternate transmission of horizontally and vertically polarized signals. For the ideal 

case, the standard deviation can be obtained from (4.39) as 
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Figure 4.7 shows the normalized standard deviation of cross-correlation coefficient 

estimates versus the normalized spectrum width for the ideal case and several values of 

|ρHV(0)|. It is evident from this plot that theoretical results are in good agreement with 

simulations. 
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Figure 4.7. Normalized standard deviation of cross-correlation coefficient estimates on correlated 
data versus the normalized spectrum width with the actual correlation coefficient |ρHV(0)| as a 
parameter for the ideal case. The oversampling factor L is 8 and the SNR is very large. Both 

theoretical results (dashed line) and simulation results (solid line) are plotted. 

4.3.2. Whitened Samples 

The cross-correlation coefficient estimator applied to oversampled whitened samples is 
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In (4.42), (4.43), and (4.44) XH and XV are the oversampled whitened signals 

corresponding to the horizontal and vertical channels, respectively. As before, N is the 

noise power in the horizontal and vertical channels, and NEF is the noise-enhancement 

factor. 

Analogously as in the previous section, the variance of the estimator in (4.41) is 
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The expectation operations inside (4.45) can be computed as in the previous section, 

where XH and XV are used instead of VH and VV. Then, with the typical assumptions (4.45) 

reduces to 

{ }
⎢
⎢
⎣

⎡
+

+−
=

LM
Var

vn

HVHV
whitenedHV

1
4

)0()0(211)0(ˆ 
42

πσ
ρρ

ρ  

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛+−
+

−

H

R
DRHV

S
N

L
trZ

S

2

1 )(2 }][ {
2

)1)()0(1( VCρ
 

 . 
}][ {

4
)0(2)0( 2

2

2 )(222

⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛++
+

H

-R
DRHVDRHV

S
N

L
trZZ

SVCρρ
 (4.46) 

For the ideal case, the standard deviation can be obtained from (4.46) as 
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Figure 4.8 shows the normalized standard deviation of cross-correlation coefficient 

estimates versus the normalized spectrum width for the ideal case and several values of 

|ρHV(0)|. Once again, theoretical results are in good agreement with simulations. 
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Figure 4.8. Normalized standard deviation of cross-correlation coefficient estimates on whitened 
data versus the normalized spectrum width with the actual correlation coefficient |ρHV(0)| as a 
parameter for the ideal case. The oversampling factor L is 8 and the SNR is very large. Both 

theoretical results (dashed line) and simulation results (solid line) are plotted. 

4.3.3. Comparison 

Comparison between the results in Figure 4.7 and Figure 4.8 reveals significant reduction 

of errors for the WTB cross-correlation coefficient estimator at large SNR. Once more, 

for lower SNRs the noise-enhancement effect begins to dominate and consequently 

deteriorates the performance of the WTB estimator. The crossover SNR (SNRc), which is 

a good indicator of this effect, is plotted in Figure 4.9 as a function of the normalized 

spectrum width for several values of ZDR. It is interesting to observe that SNRc for |ρHV(0)| 

is always higher than SNRc for both φDP and ZDR (compare Figures 4.3, 4.6, and 4.9). 
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Figure 4.9. Crossover signal-to-noise ratio SNRc versus the normalized spectrum width for the 
cross-correlation coefficient estimator and an ideal system using the differential reflectivity (ZDR) 

as a parameter. The oversampling factor L is 8 and the magnitude of the cross-correlation 
coefficient |ρHV(0)| is 0.98. 

4.4. Results 

Sections 4.1 through 4.3 discussed the application of the whitening transformation to the 

estimation of polarimetric variables. Estimators operating on whitened signals were 

termed whitening-transformation-based (WTB) estimators, and they exhibit reduced 

standard errors if the signal-to-noise ratio is relatively large.  

A performance comparison of all WTB estimators with estimators on correlated data for 

the ideal case showed that for all the variables the variance reduction for large SNR is  

 
L

LVRF
2

12 +
= , (4.48) 

where L is the oversampling factor. That is, as with the spectral moments, approximately 
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L/2 fewer samples are needed for WTB estimators of polarimetric variables to keep the 

same errors as the ones obtained without the aid of the whitening transformation.  

For low SNR, the performance of all WTB estimators deteriorates as the noise-enhancing 

effect discussed in Section 2.5 becomes important. In such case, the estimates on non-

whitened data result in better performance, and the rule for selecting the best estimate is 

as in Chapter 3: 
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In equation (4.49) θ is any of the variables discussed in this chapter, namely ZDR, ΦDP, or 

|ρHV(0)|, and SNRc is the crossover SNR defined as the SNR that conduces to a variance 

reduction factor of one. Theoretical expressions for the variance of estimates as derived 

in the previous sections become useful if one needs to compute the value of SNRc for a 

given variable under specific conditions without the need of simulations (see Figures 4.3, 

4.6, and 4.9). Under appropriate limiting conditions, these expressions match the ones 

found in the literature, if available. It is interesting to observe that the SNRc as functions 

of σvn for estimates of the three polarimetric variables discussed in this chapter are at 

different levels but exhibit the same behavior (Figures 4.3, 4.6, and 4.9).  

The variance reduction obtained with WTB estimators is of considerable importance for 

the polarimetric variables. Unlike errors in the spectral moments, errors in polarimetric 

variables at the current antenna rotation rates do not always meet the required accuracy. 

Consequently, the use of WTB estimators for the polarimetric variables can reduce errors 

to acceptable levels without sacrificing (slowing down) the antenna rotational speed. 
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5. THE WHITENING TRANSFORMATION  
IN PERSPECTIVE 

Since the origin of radar meteorology in the early 1940s, around the time when the term 

radar became the official acronym of equipment built for radio detecting and ranging of 

objects, engineers and meteorologists have been working on ways to survey the 

atmosphere with increased resolution, at faster speeds, and producing more accurate 

estimates of the variables of interest. The whitening transformation described in this 

dissertation is a novel technique in a class of several others that use range samples to 

reduce the errors of estimates on weather radars. The first part of this chapter presents a 

comparative study of such techniques. The second part is devoted to the analysis of 

several variations of the whitening transformation that attempt to overcome the problems 

discussed in previous chapters. 

5.1. Alternatives to the Whitening Transformation 

Soon after Doppler radars became a reality, researchers recognized that the variance of 

estimators could be reduced with little degradation of the spatial resolution by further 

averaging of range samples (Zrnic 1979). That is, in order to obtain more accurate 

estimates in Doppler weather radars, range-time averaging can be performed in addition 

to the conventional sample-time averaging.  

The method of averaging oversampled data along range time, which is identified here as 

“regular pulse with averaging in range”, was one of the first techniques that used range 

samples to reduce the variance of estimates. Despite its simplicity, the variance reduction 
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attained with this procedure depends not only on the number of averaged samples but 

also on their correlation. Doviak and Zrnic (1979) computed the correlation of samples 

along range time, and later Walker et al. (1980) applied this result to the computation of 

the equivalent number of independent samples (MI) for different types of receivers.  

Because highly correlated samples result in a small equivalent number of independent 

samples, it is desirable to reduce the correlation of samples along range time by either 

shortening the pulse length or increasing the receiver’s bandwidth. The method involving 

“short pulse with averaging in range” addresses this variation by reducing the pulse 

length to match the oversampling period. Unfortunately, a reduced pulse length requires a 

larger transmission bandwidth and, more importantly, it decreases the average 

transmitted power, which can hinder the radar’s normal modes of operation.  

Pulse compression techniques achieve the average transmitted power of a relatively long 

pulse while obtaining the range resolution of a short pulse. Averaging the fine-scale 

(uncorrelated) range measurements obtained by means of pulse compression techniques 

in fact results in an optimum utilization of range samples in terms of estimate variance 

reduction (Mudukutore et al. 1998). Nonetheless, pulse compression does not come 

without a rather expensive price. The need for a larger transmission bandwidth and the 

presence of range sidelobes that tend to smear the returns in range are two major 

drawbacks of this technique. 

As discussed in previous chapters, the whitening transformation produces independent 

range samples that lead to a maximum reduction in the variances of estimates. Because 

the transmitter pulse remains unchanged, this technique does not require a large 

transmission bandwidth, a very expensive commodity in the modern world of 



97 

telecommunications. Computationally equivalent to pulse compression, the whitening 

transformation presents the best compromise: independent oversampled range samples 

and little sacrifice in range resolution. 

Figure 5.1. Hydrometeors in each resolution volume are represented by their equivalent scatterer 
center, spaced by cτ /2L along range. Returns at the receiver front end are weighted by the 

transmitted pulse envelope. 

In the comparative analysis that follows a sampling rate of L/τ is assumed, thus for 

simplification, equivalent scatterer centers s(n) are spaced by cτ /2L (see Figure 5.1). 

Also, it is assumed that the power backscattered by the scatterer centers is uniform; i.e., 

E[|s(l)|2] = σs
2 for every l. The receiver bandwidth is larger than L/τ and constant, 

resulting in an effective noise power N; the transmitted peak power Pt is also constant; 

and SNR computations are referred to the composite sample as follows: (i) for the short 

and long pulses with regular averaging it is the V sample as defined in (2.5), (ii) for the 

regular pulse with whitened range samples it is the whitened X sample as defined in 

(2.15), and (iii) for pulse compression it is the sample of the compressed pulse. Only 

reflectivity estimates for one pulse (M = 1) are considered in this comparison since the 

processing along sample time is the same in all the cases. In addition to depending on the 

signal power S, reflectivity estimates at a fixed range location r depend on the transmitted 

. . . .
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cτ 
2L 

range 

Transmitted 
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      s(n) 
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pulse length (τpulse) and several radar parameters collected into Kradar that remain constant 

throughout this analysis; that is 

 
pulse

radar
e

SrKZ
τ

ˆ ˆ
2

= . (5.1) 

Figure 5.2 depicts the simplified block diagram of a digital-receiver-based system used 

for the analyses in the following sections. 

 

Figure 5.2. Simplified block diagram of a digital-receiver-based weather radar  
for the estimation of reflectivity. 

5.1.1. Regular Pulse with Averaging in Range 

In this method, a rectangular pulse of τ seconds is transmitted so there are L samples in 

the pulse. Processing of samples consists of (1) taking the magnitude squared of complex 

return samples, (2) computing the average of these quantities in blocks of L samples, and 

(3) scaling the power estimate to the proper range location and radar parameters (see 

Figure 5.3). Hence, there is one reflectivity estimate every τ seconds. 

The weather signal power estimator at range rk = ckτ /2 (k = 0, 1, 2, …) is 
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Figure 5.3. Processing for the estimation of reflectivity in the case of regular pulse with averaging 
in range. 

The approximation in (5.3) is possible because the envelope of the transmitted pulse is 

rectangular and the receiver bandwidth is much larger than the reciprocal of the pulse 

length. Therefore, if the SNR is very large, the expected value of power estimates is 

given by 
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Because the signals backscattered by non-overlapping slabs are uncorrelated 
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Hence, the SNR of each complex sample is  
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Under practical conditions, the SNR for regular pulse with averaging in range would be 

about L times higher than the value in (5.6) thanks to the matched filter that can be 

included in the receiver for this particular case (see Chapter 6). 
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The variance of power estimates is 
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where the normalized autocorrelation for range samples )()( lR
Vρ  in an ideal system is 

given in (2.9). 

5.1.2. Short Pulse with Averaging in Range 

In this method, a short rectangular pulse of τ /L seconds is transmitted so there is only one 

sample in the pulse. Processing of samples consists of (1) taking the magnitude squared 

of complex return samples, (2) computing the average of these quantities in blocks of L 

samples, and (3) scaling the power estimate to the proper range location and radar 

parameters (Figure 5.4). Hence, there is one reflectivity estimate every τ seconds. 

Figure 5.4. Processing and estimation for the case of short pulse with averaging in range. 

The signal power estimator at range rk = ckτ /2 (k = 0, 1, 2, …) is 
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where in this case 

 )()( lslV = . (5.9) 

Therefore, if the SNR is very large, the expected value of power estimates is given by 

 [ ] [ ] S
L

lsE
L

lVE
L

kSE s

Lk

kl
s

Lk

kl

Lk

kl

===== ∑∑∑
−+

=

−+

=

−+

=

2
1

2
1

2
1

2 1)( 1)( 1)](ˆ[ σσ . (5.10) 

Hence, the SNR of each complex sample is  
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The variance of power estimates is 
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Although the SNR using a regular pulse with average in range is L times larger, the 

fractional variance in this case is approximately L/2 times smaller. 
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5.1.3. Pulse Compression 

In this method, a pulse of τ seconds is modulated by a suitable phase code c(l) of length 

L, so there are L samples in the pulse corresponding to the number of sub-pulses in the 

phase-modulated transmitted pulse. Pulse modulation in this context refers to a change of 

phase of the RF sinusoidal carrier every τ /L seconds. A special case of phase codes are 

binary codes (e.g., Barker codes) for which the carrier of each sub-pulse is shifted either 

0° or 180°. Processing of samples consists of (1) correlating or “compressing” the 

received signal with a sample of the transmitted pulse, (2) taking the magnitude squared 

of complex return samples, (3) computing the average of these quantities in blocks of L 

samples, and (4) scaling the power estimate to the proper range location and radar 

parameters (Figure 5.5). Hence, there is one reflectivity estimate every τ seconds. 

 

Figure 5.5. Processing and estimation for the case of pulse compression. 

The weather signal power estimator at range rk = ckτ /2 (k = 0, 1, 2, …) is 
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where the noise is enhanced by a factor of L due to the correlator or pulse compressor. 

Pulse compressed samples Y(l) in (5.13) are obtained as 
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because the pulse is rectangular and the receiver bandwidth is very large compared to the 

reciprocal of the pulse length. Substituting (5.15) into (5.14) 
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where for Barker codes (Nathanson 1969) 
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Therefore, if the SNR is very large, the expected value of power estimates is given by 
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which reduces to 

 SLkSE s == 22)](ˆ[ σ  (5.19) 

for the ideal case where there are no sidelobes. The range-sidelobe effect of pulse 

compression techniques is evident in the non-uniform case by observing that if 

E[|s(l)|2] = σs
2(l) (5.18) turns into  
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and backscattered powers S(l) corresponding to a range rl = clτ /2L include contributions 

from ranges up to (L−1)cτ /2L meters around rl. 

From (5.19), the SNR of each complex sample (considering power from the sidelobes as 

another source of noise) is  

 
∑ ≠

+
=

0
22

22

)(
ns

s

nLN
LSNR

φσ
σ , (5.21) 

which reduces to  
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neglecting range sidelobes. 

The variance of power estimates is 
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In (5.23), the autocorrelation for range samples after the correlator in an ideal system is 
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where φ(l) = φ(l)∗φ*(−l). Introducing (5.24) into (5.23), the variance of power estimates 

simplifies to 

 ∑
−

+−=

−=
1

1

2
6

2

)()()](ˆ[
L

Ll
llL

L
SkSVar ϕ , (5.25) 

which in the ideal case where there are no sidelobes reduces to  
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5.1.4. Regular Pulse with Whitening in Range 

In this case, a rectangular pulse of τ seconds is transmitted so there are L samples in the 

pulse. Processing of samples consists of (1) whitening a block of L samples, (2) taking 

the magnitude squared of the whitened complex return samples, (3) computing the 

average of these quantities in blocks of L samples, and (4) scaling the power estimate to 
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the proper range location and radar parameters (Figure 5.6). Hence, there is one 

reflectivity estimate every τ seconds. 

 

Figure 5.6. Processing and estimation for the case of regular pulse with whitening in range. 

The signal power estimator at range rk = ckτ /2 (k = 0, 1, 2, …) is 
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where the noise is affected by the noise-enhancement factor (NEF) given in (2.22). 

Whitened samples are obtained as 
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where wl,n are the entries of the whitening transformation matrix and V(l) is given by  
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As proved in previous chapters, the expected value of power estimates is given by 
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Hence, the SNR of each complex sample is  
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which reduces to  
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for the ideal case [see (2.26)]. The variance of power estimates is 
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5.1.5. Comparison 

The results of sections 5.1.1 through 5.1.4 are summarized in Table 5.1. Whereas regular 

pulse with averaging in range is (a) the simplest method, (b) does not require a larger 

transmission bandwidth, and (c) exhibits an excellent SNR (even better with a matched 

filter); the statistical performance of the power estimator for this setting is the poorest. 

Short pulse with averaging in range achieves the desired statistical performance by 

genuinely obtaining independent samples in range. Nonetheless, as the average 

transmitted power is decreased, the SNR is L times smaller, and more importantly, it 

requires a larger transmission bandwidth. Pulse compression restores the SNR to the 

value that the regular pulse would have while still achieving almost independent samples, 

but transmission bandwidth requirements are still prohibitive for its practical 

implementation. Regular pulse with whitening in range inherently deteriorates the SNR 

due to the noise enhancement effect. Still, independent range samples are obtained 

without the need for a larger transmission bandwidth. The extent of the range weighting 
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function is the same as with the regular pulse and averaging in range, but almost twice as 

large as with the other two schemes. 

The advantages and disadvantages of each technique that can be derived from Table 5.1 

offer different trade-offs. Thus, the decision about which method is best depends on 

engineering conditions such as the freedom to increase transmission/reception 

bandwidths, the capability to increase processing power, or the peak power limitation of 

transmitters. 

 

 Regular pulse with 
averaging in range 

Short pulse with 
averaging in range 

Pulse 
compression 

Regular pulse with 
whitening in range 

Pulse length τ τ /L τ (τ /L after 
compression) τ 

Received signal 
power Lσs

2 σs
2 L2σs

2 Lσs
2 

Normalized variance 
of signal power  (L2+1)/2L2 1/L 1/L 1/L 

SNR of composite 
samples Lσs

2/N σs
2/N Lσs

2/N (L+1)σs
2/LN 

Extent of the range 
weighting function (2L−1)cτ /2L cτ /2 cτ /2 (2L−1)cτ /2L 

Independent samples No Yes Yes Yes 

Processing 
complexity Low Low High Medium 

Transmission 
bandwidth Normal Large Large Normal 

Other disadvantages 
Variance reduction 
due to averaging is 

not maximum 

Lower transmitted 
average power Range sidelobes Noise enhancement 

effect 

Table 5.1. Comparison of methods that use range samples to reduce the variance of estimates. 

5.2. Modifications of the Whitening Transformation 

Two drawbacks of the whitening transformation are the noise-enhancement effect and its 
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increased computational complexity. Noise enhancement can be minimized if the noise 

statistical properties are taken into account when designing the transformation for range 

samples. The best trade-off between sample independence and noise power boost is 

obtained by a minimum mean-square error (MMSE) approach, as with MMSE equalizers 

(Proakis and Salehi, 2000). However, this method requires precise knowledge of the SNR 

for every range gate, making it impractical for weather signals with typical dynamic 

ranges of 80 dB. A pseudo-whitening transformation, on the other hand, trades 

“whitening” for noise reduction in a more controlled fashion without the need for 

detailed information about the SNR.  

In principle, computational complexity for the whitening transformation could be cut 

down by reducing the dimension of the transformation matrix. Because the estimation of 

spectral moments requires only the first few autocorrelation estimates, discussed next is 

the feasibility of whitening autocorrelation estimates, instead of range samples. As this 

approach fails, the whitening of Fourier coefficients is revisited (see Section 3.4) as a 

means of reducing the amount of data to be whitened. 

The previous list of variations to the whitening transformation is not by any means 

exhaustive. As with any uncharted field, more modifications of the same problem are 

expected to surface with the anticipated increased excitement and continued research 

efforts on this topic. 

5.2.1. Minimum Mean-Square Error Equalization 

Chapter 2 discussed the trade-off between noise enhancement and variance reduction that 

makes the whitening transformation useful only in cases of relatively large SNR. 
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Although for weather radars the SNR of signals from storms is large, the formulation of 

the whitening transformation in effect ignores the presence of noise. The whitening 

transformation is designed to produce equalization of the signal power spectrum. 

Accordingly, for spectral regions where the signal is weak, this transformation exhibits 

large gains enhancing the corresponding noise component in an uncontrolled manner. An 

alternative is to relax the whitening requirements and select a transformation such that 

the output noise power is also minimized. A transformation that is optimized based on the 

minimum mean-square error (MMSE) criterion accomplishes the desired goal. In Section 

2.4 the contributions to the sampled complex weather signal at a fixed range location 

were decomposed into L contributions from contiguous elemental shells in the resolution 

volume. Equation (2.5) shows this decomposition, and is repeated below for an ideal 

receiver filter: 
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−

=

−−+=
1

0

1,,
L

i

iLpnilsnlV . (5.34) 

A good transformation can be viewed as one that “recovers” the elemental shells’ 

contributions s(l,n) from the available samples Vn = [V(0,n), V(1,n), ..., V(L−1,n)]T. 

Analogous to the zero-forcing equalization problem, given the vector of observations Vn 

and the relation Vn = P sn, we would like to estimate the vector of uncorrelated weather 

signal samples sn = [s(0,n), s(1,n), ..., s(2L−2,n)]T through a linear transformation on Vn; 

i.e., nn TVs =ˆ . From (5.34) P is readily recognized as 
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and T is the sought-after transformation matrix. 

Considering now the presence of additive noise, (5.34) can be modified as 
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and the problem in vector notation becomes the recovery of sn from the set of 

observations Vn, where 

 Vn = P sn + ηn, (5.37) 

and  

 nn TVs =ˆ . (5.38) 

In the previous equations ηn
 = [η(0,n), η(1,n), ..., η(L−1,n)]T is the additive noise vector, 

and the principle of MMSE can be applied to find the transformation matrix T. The 

MMSE solution for the linear model in (5.37) is well known (see for example Section 

10.6 of Kay 1993) and only the results are presented here. The transformation T that 

minimizes the mean square error E{ 2ˆ nn ss − } is 

 1* )( −+= ηss CPCPPCT TT , (5.39) 

where Cs and Cη are the covariance matrices for sn and ηn, respectively. In our problem, 

these covariance matrices are multiples of the identity matrix as both sn and ηn are white 

and stationary. Let Cs = SI and Cη = NI, where S and N are signal and noise powers, 

respectively; then, 

 ( )[ ] 1 *  −
+= IPPPT S

NTT . (5.40) 
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Although this transformation outperforms the whitening transformation in terms of the 

noise enhancement effect, its implementation requires knowledge of the signal-to-noise 

ratio for every range sample, rendering it impractical. Further study beyond the scope of 

this dissertation is required to assess the performance of this transformation if the SNR is 

not known and has to be estimated. Since the SNR of weather signals may vary greatly 

from one resolution volume to another, its on-line estimation would require the 

continuous re-computation of T, which would considerably increase the computational 

complexity of this method [compare (5.40) with (2.12)]. Indeed, these issues should be 

addressed in the future to gauge the trade-off between the “simple-yet-noisy” whitening 

transformation and its more robust MMSE counterpart. 

5.2.2. Pseudo Whitening Transformation 

The main disadvantage of the MMSE transformation is that its design requires detailed 

knowledge of the SNR for each sample to be processed (Ebbini et al. 1993). In this sense, 

there exist several more realistic implementations termed as partial or pseudo-whitening 

that present a compromise between computational complexity and good SNR. Two of 

them will be discussed here. 

One approach consists of approximating H−1 [see (2.12)] by a “sharpening filter” of 

bounded magnitude (Herrmann and Kelley 1989). The pseudo-whitening transformation 

based on the sharpening filter is given by 
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where SEF is the signal enhancement factor needed to preserve the total signal power 
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after the transformation and is given by 
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The parameter p in (5.41) is called a “sharpening parameter” and may assume values 

between 0 and ∞. For p = 0, W reduces to H*T, which represents the matched filter 

offering the best SNR. At the other extreme, for p→∞, W equals H−1, i.e., the whitening 

transformation. Hence, the degree of “sharpening” or whitening is dictated by p.  

Another approach to limit the gain of the whitening transformation to reduce the noise 

enhancement effect arises from the relation between the eigenvalues of a correlation 

matrix and the corresponding power spectral density. That is, the range spanned by the 

power spectral density matches closely the range of eigenvalues (Johnson and Dudgeon 

1993). Accordingly, by limiting the span of eigenvalues, it is possible to place a bound on 

the gain of the transformation. The correlation matrix of white noise passing through the 

whitening transformation is given by CV
−1 and its eigenvalues are λi

−1 (i = 1, 2, …, L), 

where λi are the eigenvalues of CV. Hence, by placing a lower bound on the eigenvalues 

it is possible to limit the gain of the whitening transformation. This is easily realized by 

looking at the whitening transformation obtained by the eigenvalue decomposition of CV 

as in (2.14). Then, the pseudo-whitening transformation based on eigenvalue “clipping” 

is given by 

 T=W DU . (5.43) 

In (5.43) U is the matrix with the eigenvectors of CV, and D~  is a diagonal matrix with 

elements 
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where β is a threshold that can take values between L
ii 1}min{ =λ  and L

ii 1}max{ =λ . The 

parameter β controls the trade-off between whitening and noise enhancement due to large 

gains in a similar fashion as the parameter p does it in the sharpening filter. 

As predicted by the previous analysis, the performance of Doppler spectral moment and 

polarimetric variable estimators on pseudo-whitened samples will lie somewhere between 

the results obtained with whitened samples (p → ∞, β = L
ii 1}min{ =λ ) and the ones 

obtained with correlated (non-whitened) samples (p = 0, β = L
ii 1}max{ =λ ), depending on 

the selected value for the corresponding adjustable parameter. Figure 5.7 shows the 

performance of the sharpening filter with parameter p = 3 as a function of the SNR. 

Although samples at the output of the sharpening filter are not completely whitened 

(observe that the variance reduction is not as large as the one obtained with whitened 

samples), the noise characteristics are improved given that the crossover point has shifted 

to the left. A more detailed study on optimum choices for p or β is beyond the scope of 

this dissertation and remains pending for future work. 

 



115 

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Signal−to−Noise ratio, SNR (dB)

M
1/

2  
SD

[Ŝ
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Figure 5.7. Normalized standard deviation for power estimates from correlated, whitened, and 
pseudo-whitened data as a function of the signal-to-noise ratio (SNR) for the ideal case. The 
oversampling factor L is 8, the normalized spectrum width σvn is 0.08. The pseudo-whitening 

transformation is based on a sharpening filter with parameter p = 3. 

 

5.2.3. Whitening of Correlation Estimates 

A way to reduce the computational complexity of the whitening transformation is to 

reduce the dimensionality of the transformation matrix. Since pulse-pair estimates of 

Doppler spectral moments and polarimetric variables utilize only a few lags of the 

correlation estimate, one would be tempted to move the whitening transformation one 

step further into the processing chain; that is, to whiten only the few correlation lags 

needed in the estimation process as depicted in Figure 5.8. Unfortunately, the whitening 

transformation does not do well preserving the mean of a sequence unless this mean is 

zero. To see this consider a non-zero mean process X with correlation matrix 
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CX = μ211T + σX
2C, where 1 = [1 1 … 1]T. The required transformation would have to 

operate on X to generate a transformed sequence Y with correlation matrix 

CY = μ211T + σY
2I. Therefore, as Y = WX and CY = E[Y*YT] = W*CXWT, the following 

two conditions for W arise: 
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so W is the unitary matrix that satisfies ICWW 2
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Hence, (5.45) can be satisfied only if σY = σX and C is the identity matrix, which is not 

the case with correlation estimates. Therefore, whitening of correlation estimates is not 

feasible. 

 

Figure 5.8. Block diagram depicting the process involving whitening of correlation estimates. 

5.2.4. Whitening of Spectral Coefficient Estimates 

Section 3.4 dealt with the estimation of the Doppler spectrum using two approaches, one 

of them employing whitened Fourier coefficients. Because complex Fourier coefficients 

of a zero-mean sequence have also zero mean, whitening of these coefficients is indeed 

feasible. Frequency-domain methods that estimate Doppler spectral parameters can, in 

Correlation 
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Whitening 
W 

V(l) Variable 
estimation 

Lag 
selection 
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principle, reduce the amount of data involved in the estimation process by assuming a 

narrow Doppler spectrum and concentrating on those coefficients around the peak. This 

simplified method allows the estimation of Doppler velocity and spectrum width with an 

accuracy that depends on the number of coefficients employed in the process. However, 

power estimates are accurate only if the power contained in the skirts of the narrow 

spectrum can be neglected.  

The whitening transformation for the Fourier coefficients can be obtained from their 

normalized correlation matrix along range time. By definition, Fourier coefficients are 

computed as 
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The correlation of these estimates along range time is  
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where ςV(k) is the usual power spectral density of V (k is a parameter). Because the 

normalized correlation matrices along range time of both time series and Fourier 
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coefficients are the same, namely )0(/)( )()( R
V

R
V RmR , a whitening transformation exactly 

like the one used on time series data can be applied to whiten Fourier coefficients. 

Figure 5.9 depicts a block diagram for the scheme that employs whitened Fourier 

coefficients. Further study is needed to determine the trade-offs between data reduction 

and accuracy of estimates. 

 

Figure 5.9. Block diagram depicting the process involving whitening of Fourier coefficients. 
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6. PRACTICAL EFFECTS AND  
IMPLEMENTATION ISSUES 

Most of the analyses performed in previous chapters dealt with ideal systems, that is, 

systems that have a rectangular transmitter pulse and an infinite-bandwidth receiver filter. 

In this chapter, those assumptions are relaxed and the effects of non-rectangular 

transmitter pulses and limited-bandwidth receiver filters are studied. In addition, the 

derivation of the whitening transformation in Chapter 2 assumed that scatterers are 

uniformly distributed in the pulse volume. Therefore, it is important to investigate the 

effects of reflectivity gradients on the performance of WTB estimators. Finally, practical 

implementation issues are discussed, and the performance of the whitening 

transformation on real weather data acquired with a digital receiver is demonstrated. 

6.1. Effects of Transmitted Pulse Shape 

Although the envelope of the transmitted pulse shape on pulsed weather radars is ideally 

assumed to be perfectly rectangular, that is rarely the case in practice. Non-zero rising 

and falling times are unavoidable because finite transmission bandwidths smooth the 

sharp edges of the ideal rectangular shape. In this regard, it is useful to investigate the 

effects of non-ideal pulse shapes on the performance of the whitening transformation in 

terms of achieved variance reduction and noise enhancement.  

Pulses deviating from the ideal rectangular shape tend to broaden on the tails, increasing 

the correlation of samples along range time. More correlated samples result in estimates 

with larger errors when left “untreated”. Hence, whitened samples derived from highly 
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correlated data lead to increased variance reduction factors. However, as data become 

more correlated, the decorrelation process turns out to be more difficult to accomplish. 

As an example, consider a set of fully correlated data. In such data set, only one sample 

conveys the information of the underlying process, and whitening or decorrelation of this 

data set is theoretically impossible. The difficulty in whitening a given set of samples is 

measured by the corresponding noise enhancement factor. Hence, in the following 

analysis the variance reduction and the noise enhancement factors are computed for 

different pulse shapes.  

Pulse shapes can be modeled parametrically with the aid of sigmoid functions, where the 

parameter of the sigmoid determines the smoothness of the pulse.  That is, 

 )()()( τ−−= tftftp sigsig , (6.1) 

where τ is the pulse length, and fsig(t) is the sigmoid function. Commonly referred to as 

“soft-limiting” functions (Zurada 1995), sigmoid functions are defined as 

 tsig e
tf

 1
1)( γ−+

= , (6.2) 

where γ is the “smoothness” parameter that takes positive real values. For example, the 

ideal pulse is obtained in the limit as γ → ∞. Figure 6.1 shows several pulse shapes using 

equation (6.1) for different values of γ. 

Assuming an ideal receiver with infinite bandwidth, the correlation matrix )(R
VC  for the 

input signal V can be obtained as in (2.10), where the correlation coefficient is given by 

  )()()()( mpmpmR
V −∗=ρ ,  (6.3) 
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and p(m) is the discrete-time counterpart of the pulse envelope as defined in (6.1). 
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Figure 6.1. Transmitter pulse shape approximated with sigmoid functions for different  
values of γ. The ideal pulse is obtained as γ → ∞. A pulse with a rise time of 10% of the pulse 

width (as the one in the WSR-88D weather radar) corresponds to γ = 44. 

The variance reduction factor for power estimates was defined in Chapter 3 as 
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and the noise enhancement factor was introduced in Chapter 2 as 
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Thus, only the normalized correlation matrix )(R
VC  is needed to analyze the performance 

of the whitening transformation for different pulse shapes in terms of variance reduction 
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and noise enhancement. Figure 6.2 shows these parameters as a function of the pulse 

smoothness for an oversampling factor of eight.  
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Figure 6.2. Effects of the transmitter pulse shape on the performance of the whitening 
transformation. (Top) Variance reduction factor vs. the pulse smoothness parameter γ; and 

(bottom) noise enhancement vs. the pulse smoothness parameter γ. In both cases the receiver filter 
is ideal and the oversampling factor L is 8. 

As predicted, for smoother pulses (small γ) samples are more correlated and the variance 

reduction factor is larger. It is important to note that the larger variance reduction of a 

smooth pulse is not an improvement over a sharp pulse; rather, it is an improvement over 

the spoilage that the smooth pulse causes. In fact, it is more difficult to whiten the 
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samples corresponding to smooth pulses and this is corroborated by a considerable noise 

enhancement (about 20 dB). Conversely, for sharper pulses (large γ) samples are less 

correlated, and both the variance reduction and noise enhancement factors are smaller 

tending to the ideal case for values of γ larger than about 100. For values of γ greater than 

about 50, which corresponds to the pulse in the WSR-88D weather radars, the 

performance of WTB estimators is within 10% of the one observed in the ideal case. 

6.2. Effects of Receiver Filter Characteristics 

Analyses in previous chapters concerning an ideal system considered the bandwidth of 

the receiver filter to be very large, namely, larger than L/τ. In practice, the bandwidth of 

the receiver filter for weather radars should be as narrow as possible while keeping the 

desired range resolution that depends on the width of the filter characteristics and pulse 

shape (Doviak and Zrnic 1978). Then, it is important to investigate the effects of the 

receiver bandwidth on the performance of the whitening transformation in terms of 

achieved variance reduction and noise enhancement. 

Equivalent to the effect of smoothing the pulse shape, reducing the receiver bandwidth 

results in more correlated samples. Therefore, variance reduction factors and noise 

enhancement should increase for whitened samples derived from heavily filtered data 

(Section 6.1). To test this hypothesis, a 5th-order, lowpass, Butterworth filter was selected 

to model a receiver filter with variable bandwidth. The bandwidth B6 is specified as the 

band of frequencies where the filter power gain is within 6 dB of its highest level. Hence, 

following Doviak and Zrnic (1993), “matched” conditions are attained if the receiver-
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bandwidth pulse-width product B6τ  is one. Figure 6.3 shows the variance reduction and 

the noise enhancement factors as a function of B6τ. As predicted, for narrower 

bandwidths (small B6τ) samples are more correlated and the variance reduction factor is 

larger. However, for very narrow bandwidths the noise enhancement creeps to 

unaffordable levels of up to 80 dB. Conversely, for broader bandwidths (large B6τ) 

samples are less correlated, and both the variance reduction and noise enhancement 

factors are smaller and tend to the ideal case for values of B6τ close to L. Therefore, there 

is a tradeoff between the factors contributing to the total noise power after whitening. 

The narrower the receiver bandwidth, the lower the system noise power but the larger the 

noise enhancement factor. On the other hand, the broader the receiver bandwidth, the 

higher the system noise power but the smaller the noise enhancement factor. In a 

practical setting, the system would need to include a receiver filter with the optimum 

bandwidth in terms of SNR maximization.  

In the standard Doppler weather radar the filters other than the “matched one” have a 

bandwidth of about 10 times the reciprocal of the pulse width (in the order of 10 MHz). 

These filters are needed to reject images and prevent interferences from contaminating 

the data. Further, filters with smaller bandwidths than about 10 MHz at RF frequencies 

are not readily available. Alternatively, in modern digital receivers the overall bandwidth 

is dictated by the antialias filter centered at the intermediate frequency (IF) with typical 

bandwidths of several MHz. Therefore, in a practical setting B6τ > 7, and from Figure 6.3 

it can be concluded that the noise enhancement and variance reduction factor under 

typical working conditions would approach the ideal (infinite bandwidth) case. 



125 

1 2 3 4 5 6 7 8
4

5

6

7

8

B
6
τ

V
R

F

Variance reduction factor vs. receiver bandwidth

1 2 3 4 5 6 7 8
10

0

10
5

10
10

B
6
τ

N
E

F

Noise enhancement factor vs. receiver bandwidth

Ideal case 

Ideal case 

"Matched" 
condition 

"Matched" 
condition 

 

Figure 6.3. Effects of the receiver filter bandwidth on the performance of the whitening 
transformation. (Top) Variance reduction factor vs. the receiver-bandwidth pulse-width product 
B6τ , and (bottom) noise enhancement vs. the receiver-bandwidth pulse-width product. In both 

cases the transmitted pulse is ideal and the oversampling factor L is 8. 

6.3. Effects of Reflectivity Gradients within the Resolution Volume 

Derivation of the whitening transformation on oversampled range data in Section 2.4 

assumed that the pulse volume was uniformly filled with scatterers. That is, a uniform 

reflectivity profile is required for the theoretically predicted performance of WTB 

estimators. Therefore, it is important to analyze the sensitivity of WTB estimators to 

reflectivity gradients in the pulse volume. A comprehensive study of this effect would 
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include different types of “realistic” profiles that are typically encountered on weather 

phenomena. However, a thorough analysis goes beyond the scope of this dissertation, and 

only linear reflectivity profiles on decibel scale (constant reflectivity gradients) are 

studied in this section. This type of reflectivity profile has been used in the literature for 

various theoretical analyses (e.g., Scarchilli et al. 1999). 

Assume that the pulse volume is filled with scatterers such that the backscattered power 

in range follows the exponential characteristic below: 

 220   ,10)( 10/22 −≤≤= Lll gl
ss σσ , (6.6) 

where g is the reflectivity gradient. The performance of WTB estimators is measured by 

the variance reduction and noise enhancement factors. However, noise enhancement is 

irrelevant in this case, because it depends solely on the whitening transformation matrix; 

this matrix is computed assuming a uniform reflectivity profile and therefore does not 

change. The variance reduction can be computed for the general case as 
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where the normalized covariance matrices can be expressed as  

 }{ *)( TR E VVCV = ,  (6.8) 

and 

 TRTR E WCWXXC VX
)(**)( }{ == .  (6.9) 

In (6.9) W is computed as usual by assuming a uniform reflectivity profile. Using (2.5), 

V(l) can be expressed in matrix form as 



127 

 PsV = , (6.10) 

where V = [V(0), V(1), …, V(L−1)] T is the received signal vector, s is the backscattered 

signal vector defined as s = [s(0), s(1), …, s(2L−2)] T, and P is the “pulse matrix” defined 

in (5.35). Therefore, (6.8) becomes 
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where }{ *)( TR E ssCs =  is the normalized correlation matrix for the backscattered signals. 

Finally, the variance reduction factor is computed from (6.7) as 
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As argued in Chapter 2, the backscattered signals from different “slabs” are mutually 

independent, so )(R
sC  is just a matrix with diagonal entries )}22(,),1(),0({ 222 −Lsss σσσ .  

Figure 6.4 shows the effects of reflectivity gradients on the performance of the whitening 

transformation versus the normalized gradient gL (gL indicates the total reflectivity 

variation on a range interval of cτ /2 meters). The variance reduction factor was computed 

using (6.12), where )(R
sC  was generated according to (6.6). As expected, large reflectivity 

gradients deteriorate the performance of WTB estimators. However, small departures 

from uniform profiles seem to be tolerated. Figure 6.4 also depicts the normalized bias of 

power estimates versus gL. It is important to note that this bias is not caused by the 

whitening transformation but is due to the estimation algorithm that averages L power 

estimates assuming a uniform profile. Note that gradients of 10 dB/km (2.5 dB per 250 m 

for the WSR-88D pulse length) would create negligible performance deterioration. 
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Figure 6.4. Effects of reflectivity gradients on the performance of the whitening transformation. 
(Top) Variance reduction factor vs. the normalized reflectivity gradient gL, and (bottom) 

normalized bias of power estimates vs. the normalized reflectivity gradient gL. In both cases, the 
reflectivity profile is linear on decibel scale and gL indicates the total reflectivity variation on a 

range interval of cτ /2 meters. 

6.4. Implementation Issues 

Whitening-transformation-based estimators entail (1) whitening in range the oversampled 

signals, (2) processing time samples by any one of the well-known algorithms, and (3) 

combining in range intermediate results of these algorithms to yield significant reduction 

in the variances of estimates (see Figure 6.5 for a depiction of this process). Variance 

reduction occurs only if the signal-to-noise ratios are relatively large, as is usually the 
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case for most signals in weather surveillance radars. As shown in Chapters 3 and 4, at 

low SNR the variances increase so that there are crossover points (these are different for 

different estimates). Below the cross over SNR (SNRc), the classical processing produces 

lower variances. An objective decision on which estimates to use for each variable, 

classical or the ones obtained from whitened samples in range, should be based on the 

SNR and the corresponding SNRc. To avoid parallel computation, the choice of which 

channel to use can be made from a priori knowledge of the SNR, or data could be stored 

and processing in the appropriate channel could start after the SNR has been determined. 

Otherwise, both processing chains could proceed simultaneously and the decision on 

which one to use can be made at the end of the dwell time. This parallel processing and 

decision mechanism is illustrated in Figure 6.6.  

As depicted in Figure 6.6, the classical processing includes a matched filter that 

maximizes the SNR of weather echoes. Because the actual SNR on the classical 

processing chain is about L times larger after the matched filter, it seems that the values 

of SNRc computed in Chapters 3 and 4 need adjustment. In theory, the precise adjustment 

in SNR depends on the effective noise bandwidth of the matched filter (to compute the 

actual SNR enhancement for correlated samples) and on the behavior of the curves for 

variance of estimates vs. SNR (to compute the displacement of SNRc due to the SNR 

enhancement). However, because the variance of estimates for correlated samples flattens 

for SNRs around the crossover point (see Figure 3.4), the adjusted SNRc is practically 

equal to the SNRc depicted in Figures 3.5, 3.8, 3.11, 4.3, 4.6, and 4.9.  Therefore, the 

addition of a matched filter to the processing of correlated samples does not significantly 

change the relative performance of WTB estimates compared to classical estimates. 
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Figure 6.5. Depiction of sampling in range and processing of the signals. (a) Samples in range 
with spacing equal to the pulse length; standard processing to obtain the Doppler spectrum and its 

moments is indicated. (b) Oversampling in range. (c) Zoomed presentation of range locations 
(oversampled) at which meteorological variables (including spectra) are estimated. Range 

samples that are to be whitened are indicated. (d) Processing of whitened samples to obtain 
estimates of spectra, spectral moments, and polarimatric variables in range. 
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Figure 6.6. Schematic of the proposed processing that also retains the advantages of the 
traditional processing. 

In addition to opening the bandwidth to accommodate the whitening transformation, 

oversampling increases the internal data rate for subsystems after the analog-to-digital 

converter. Consequently, practical implementation of the whitening transformation 

requires a digital signal processor with enough power to accept I and Q data at rates L 

times faster than with classical processing, and to process these samples for the 

computation of spectral moments and polarimetric variables within the dwell time (MTs). 

Because the radar resolution is not increased the output of products remains the same. 

Processing of samples involves (1) a matrix multiplication of every block of L samples, 

(2) L times the classical processing for partial estimates, and (3) a final average of partial 

estimates to compute the meteorological variables of interest. It is believed from personal 

experience (Torres and Zahrai 2002) that implementation of this scheme on modern DSP 

boards will not present a major problem for oversampling factors of up to about 10. 

Next, the performance of WTB estimators on real data is demonstrated. A digital receiver 

with an oversampling factor of L = 3 was used to acquire weather data, and an off-line 

processing as the one shown in Figure 6.5 was employed to estimate total signal power 
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and Doppler velocity. For a detailed description of the demonstration procedure refer to 

Ivic (2001). 
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Figure 6.7. Performance of WTB estimators on real weather data. (Top) Total power estimates 
and (bottom) mean Doppler velocity estimates vs. range for whitened (solid line), correlated 

(dotted line), and non-oversampled data (dashed line). Data was acquired with a digital receiver 
and a stationary antenna. The oversampling factor is L = 3. Recorded data streams were processed 

off-line by the procedure described in Section 2.4 (see Figure 6.5). Results corroborate the 
accuracy of WTB estimators. 

Figure 6.7 shows the power and velocity estimates on whitened and non-whitened data; 
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classical estimates that do not employ oversampled data are also plotted. The agreement 

between the three types of estimators corroborates the predicted accuracy of WTB 

estimates. The variance reduction achieved through the whitening of range samples can 

be inferred from these curves by the smoothness observed in WTB estimates. A complete 

analysis to verify the performance of the whitening transformation on real data is very 

involved and left for future work (Ivic 2001). Still, this experiment confirms that the 

whitening transformation is indeed a viable candidate for future enhancements of 

polarimetric Doppler weather radars. 
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7. CONCLUSIONS AND FUTURE WORK 

A method for estimation of Doppler spectrum and its moments as well as several 

polarimetric variables on pulsed weather radars was presented. This scheme operates on 

oversampled echoes in range, and the aforementioned radar variables are estimated by 

suitably combining weighted averages of these oversampled signals with usual 

processing of samples (spaced at pulse repetition time) at a fixed range location. The 

weights in range are chosen via a whitening transformation such that the oversampled 

signals become uncorrelated and consequently the variance of the estimates decreases 

significantly. 

Whitening-transformation-based (WTB) estimators of spectral moments (Chapter 3) and 

polarimetric variables (Chapter 4) were introduced, and their performance was compared 

to that of classical estimators. The variance reduction achieved by WTB estimators under 

ideal conditions asymptotically tends to L/2 for large signal-to-noise ratios (SNR) and 

large oversampling factor L. For low signal-to-noise ratios there is a crossover point 

(SNRc) for the variances of WTB and classical estimators. Analytical expressions that 

allow the computation of SNRc for any variable and different conditions were derived. 

Above the SNRc, WTB estimates are preferred over classical estimates. Below the SNRc, 

the noise enhancement effect becomes more important and classical estimates are 

favored. 

Methods that use range samples to reduce the estimation variance were compared in 

Chapter 5. Regular pulse with averaging is the simplest method, exhibits a good SNR, but 

has the worst statistical performance because range samples are not uncorrelated. Short 
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pulse with averaging genuinely obtains uncorrelated samples, but the transmission 

bandwidth is broadened and the average transmitted power is reduced. Therefore, the 

SNR is decreased. Pulse compression restores the SNR and achieves almost independent 

samples. However, as with a short pulse, it becomes impractical due to its increased 

transmission bandwidth requirements. The whitening transformation method deteriorates 

the SNR; however, it achieves independent samples without the need for a larger 

transmission bandwidth and with little sacrifice in range resolution. There are different 

trade-offs in this analysis, and the ultimate decision about the best method depends on 

several engineering factors such as transmission bandwidth, signal processor capacity, 

and transmitter peak power. 

To avoid the effects of noise enhancement, minimum-mean-squared-error (MMSE) 

solutions were explored in Chapter 5. It was shown that MMSE schemes require detailed 

knowledge of the SNR for every range sample, making them impractical. As an 

alternative, pseudo-whitening methods achieve a compromise between whitening and 

noise enhancement in a more controlled fashion. They seem to be suitable candidates for 

practical implementation in future enhancements of the WSR-88D, and hence are worthy 

of further study. 

Analysis of practical effects in Chapter 6 revealed that for typical parameters of a real 

system, performance of WTB estimators approaches theoretical limits of the ideal case. 

Parallel processing including whitened and classical estimators allows the selection of 

one or the other depending on current conditions such as SNR and spectrum width. 

Further, it was argued that addition of a matched filter in the classical processing chain 

does not change the SNRc for practical purposes. Therefore, the validity of WTB 
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estimates is not affected. 

Realistic simulations (see Appendix A) were performed using known statistical 

properties of signals reflected by passive scatterers in fluids. Further, simulations take the 

known properties of the probing pulse and receiver filter to reconstruct a composite 

signal from distributed scatterers illuminated by the pulse. In addition to the results 

obtained with simulated data, analyses on real weather data acquired with a digital 

receiver produced very encouraging outcomes. This work confirms that WTB estimators 

are indeed viable candidates for future enhancements of the WSR-88D radar network. 

Summarizing, the whitening transformation allows increasing the speed of volume 

coverage by weather radar so that hazardous features can be timely detected. It also leads 

to better estimates of precipitation and wind fields. The application of this technique is 

possible because of two reasons: 

• the correlation of samples in range is known exactly if the resolution volume is 

uniformly filled with scatterers (true over relatively short ranges), and the receiver 

bandwidth is large compared to the reciprocal of the pulse length.  

• for all weather phenomena of interest, the SNR is relatively high (above the 

crossover SNR), so the increase of noise power is not critical and the method 

works well.  
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Several areas for future study can be derived from this work. For the interested 

researcher, below is a list with topics that deserve further investigation: 

• Detailed analysis of implementation issues. If it is agreed that WTB estimators 

will be part of future WSR-88D enhancements, implementation issues will be of 

importance. The required processing power of digital signal processor (DSP) 

chips running the algorithms presented in this dissertation needs be established. In 

this regard, the feasibility of a parallel implementation to keep the current 

functionality as described in Chapter 7 has to be taken into account when 

performing such assessment. For a polarimetric radar transmitting alternate 

polarizations, changes in the estimation procedures need consideration, and their 

performance has to be reevaluated [a discussion on alternate transmission of 

horizontal and vertical polarizations can be found in Sachidananda and Zrnic 

(1989)]. 

• Comprehensive analysis of the effects of transmitter pulse shape, receiver filter 

impulse response, and reflectivity gradients within the pulse. Although Chapter 7 

introduced these issues, a more thorough investigation is required. This is 

especially important when considering the characteristics of a practical system. In 

this regard, methods that accurately measure the correlation of echo samples in 

range need be devised so that WTB estimates can be correctly computed and the 

performance of the whitening transformation can be accurately predicted. The 

possibility to find an optimum receiver bandwidth in terms of SNR has to be 

explored as well. 
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• Study of the sensitivity of variance reduction factors (VRF) to the phase of the 

autocorrelation for range samples. It was discussed in Chapter 1 that the 

correlation of range samples includes a complex exponential term that depends on 

practical effects such as amplitude modulation-to-phase modulation (AM-to-PM) 

conversion within the pulse. Precise measurement of this phase is therefore 

required to achieve the predicted performance of WTB estimators. Even with a 

precise knowledge of the systematic phase term, the analysis in Chapter 1 

neglected the phase contribution from propagation changes due to a non-

homogeneous medium along the antenna beam. Still, it is expected that this kind 

of propagation effects will be minor compared with the systematic phase term 

(Ivic 2001). A deeper analysis will be required to evaluate the decay in variance 

reduction incurred either when the autocorrelation phase is not known precisely 

or when the propagation changes within the pulse are significant. 

• Theoretical derivation of maximum likelihood estimates and the Cramer-Rao 

lower bound (CRLB). The computation of the CRLB would help to gain a deeper 

understanding of the advantages of using WTB estimators in a polarimetric 

weather radar. That is, the performance of WTB estimators can be evaluated 

against the theoretical limit given by the CRLB. On the other hand, maximum 

likelihood (ML) estimators usually achieve the CRLB but they are significantly 

more difficult to derive. This is especially true for the variables that depend on 

more than one estimate, as is the case for all polarimetric variables. In this regard, 

it is worthy to study the trade-offs between WTB estimators and their ML 

counterparts.  
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• Study of pseudo-whitening schemes. It is important to devise alternate and 

feasible methods that mitigate the noise-enhancement effect and do not require 

precise knowledge of the SNR. Two approaches for pseudo-whitening were 

introduced in Chapter 5. These require further investigation and new schemes 

need exploration. It is believed that some kind of pseudo-whitening would be the 

optimum solution with the best performance in a practical implementation. 

• Application of the whitening transformation to increase the resolution of pulsed 

Doppler weather radars. It is suggested by the nature of the whitening 

transformation that if samples are not recombined through average, the resolution 

of weather radars in range could potentially be increased. Theoretical analyses are 

needed in order to prove the validity of this argument. 

• Application of the whitening transformation to phased-array weather radars. The 

method of decomposing echo signals into their orthogonal components along the 

range-time axis could be applied to phased-array radars. Further research is 

required to determine the implementation and implications that this novel 

technique would bring to these sophisticated remote sensing devices.  
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APPENDIX A. SIMULATION OF OVERSAMPLED 
WEATHER RADAR SIGNALS 

Computer simulations of weather echoes are necessary to study the properties and 

behavior of whitening-transformation-based estimators. Theoretical results can be 

verified using perfectly known and controlled conditions, reassessing the effectiveness of 

the proposed processing scheme. In this appendix, a method for the efficient generation 

of simulated over-sampled dual-polarization data is presented. The method is based on a 

combination of the procedure for generating single-polarization time series (Zrnic 1975) 

with a procedure for generating correlated time series (Galati 1995). The simulations use 

known statistical properties of signals reflected by passive scatterers in fluids. Further, 

they take into account the known properties of the probing pulse and receiver filter to 

reconstruct a composite signal from the distributed scatterers illuminated by the pulse. 

The constructed time series pair exhibits the required autocorrelation in range, 

autocorrelation in time, and cross-correlation between time series for horizontal and 

vertical polarizations. 

A.1. Autocorrelation of Samples along Range Time 

Signals received by a Doppler meteorological radar at any given time are due to the 

superposition of the waves backscattered by the hydrometeors that are present in the 

radar resolution volume. The range location rs of the resolution volume with respect to 

the radar depends on the time delay between the transmitted pulse and the sampling time 

τs as given by 
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2

s
s

cr τ
= , (A.1) 

where c is the speed of light. 

The simulation procedure starts with oversampling in range (along the range-time axis) 

so that there are L samples during the pulse duration τ. The contribution of scatterers 

within the resolution volume is distributed among L “slabs,” where each slab 

encompasses a large number of hydrometeors but is represented by its equivalent 

“scatterer center,” which backscatters the voltage s(l). This is reasonable because there 

are numerous scatterers in the resolution volume so that their contribution causes the 

voltage backscattered by each slab to be a Gaussian complex random variable. Thus, each 

element of the sequence s(l) is an independent, identically distributed (iid) complex 

Gaussian random variable (rv) with zero mean and unit variance. It is assumed that the 

slab centers are separated in range by cτ /2L and that the weather signal is sampled at a 

rate L times faster than the reciprocal of the pulse width, i.e., το = τ /L seconds apart. 

Figure A.1 shows a simplified scheme of the basic elements involved in the simulation 

procedure. 

The case of an ideal receiver is considered first. For such receiver, the impulse response 

h(n) is given by the unit-sample sequence, i.e., h(n) = δ(n). If range time is indexed with 

l, a range sample of the weather signal is given by 
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or simply 
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where s is a 2L−1 vector of iid Gaussian random variables with zero mean and unit 

variance, and p is the transmitted pulse envelope.  

 

Figure A.1. Basic elements involved in the simulation of oversampled weather signals. 

To verify the validity of (A.3), we can compute the correlation in range time of the set of 

samples V1(l) as 
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where the superscript (R) denotes “range time”. By the arguments presented above, the 

range-time correlation of s(l) is given by 

 )()()( mmR R
S δ= . (A.5) 
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Then, 
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which agrees with (4.39) of Doviak and Zrnic (1993). It is important to note from the 

previous equation that the mean power of the signal at the end of this stage is ∑
−

=
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0

2 )(
L

l
lp . 

To avoid unnecessary complications normalized powers (through a 1Ω resistor) are 

considered, so signals are voltages (or currents). 

A non-ideal receiver channel can be modeled with the following block diagram: 

 

 

 

Assuming that the receiver is a linear, shift-invariant system with impulse response given 

by h, the convolution operation can be used to obtain V2(l) as 
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The power of this signal is now affected by the receiver’s filter. The mean signal power 

after adding correlation in range is ∑
−+

=

∗=
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2))((
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l
lphG , where F is the receiver’s filter 

impulse response length. In addition, the length of the input data sequence V1 in (A.7) 

need be adjusted to L+F−1 samples so enough convolution samples are computed in 

order to bypass transients and obtain a sequence V2 with L samples. 
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h 
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A.2. Autocorrelation of Samples along Sample Time 

For Doppler measurements the radar is pulsed at a sufficiently high rate so that the 

atmospheric phenomena produce correlated signal samples. Samples for every range 

location are taken at intervals of Ts seconds, giving origin to the “sample time”. It can be 

proved that the sample-time correlation of weather signals is Gaussian (Doviak and Zrnic 

1993) and given by 

)],(),([)()( *)()( mnlVnlVEmRmTR T
Vs

T
V +=≡  

 ( ) , }/8exp{ /42 λπλπσ smTvj
sv emTS −−=  (A.8) 

where the superscript (T) denotes “sample-time”, λ is the radar wavelength, S is the 

weather signal mean power, v  the mean Doppler velocity of scatterers, and vσ  the 

associated spectrum width. Observe that V in (A.8) is a two-dimensional quantity where 

the first index corresponds to range time and the second one to sample time. 

To assimilate the required correlation in sample time (A.8) proceed as follows. Repeat 

the simulation in (A.7) for M sample-time data points using independent realizations of s 

for each iteration. This generates a (L+F−1)-by-M matrix V3 given by 
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where s is a (2L+F−2)-by-M matrix of iid, zero-mean, unit-variance, Gaussian random 

variables. Transient removal can be accomplished by constructing a truncated version of 

V3 as ),1(),( 34 nFlVnlV −+= , for 0 < l < L and 0 < n < M. It can be observed that for a 

given time (fixed n) the samples V4(l,n) for 0 < l < L have a correlation given in (A.6), 
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and for a given range (fixed l) they are iid complex Gaussian rv with zero mean and 

variance G (see previous section). Therefore, the usual coloring procedure can be applied 

along sample time.  

Start by expressing the power spectrum (on a discrete Doppler velocity axis) of (A.8) as 

 ( )[ ]     ,  2/exp
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)( 22

2
1 vk

v
k vv

G
Sv σ
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where va is the maximum unambiguous velocity. The next step is to alias this spectrum 

into the Nyquist interval (M samples) and then flip it to change the Doppler velocity axis 

to the frequency axis (v = −λfd/2). This “flipped” sequence will be referred to as ς ’(k), 

where 0 < k < M. 

 

 

 

 

Summarizing, the time series with sample-time correlation is obtained (for a fixed l) 

using discrete-time Fourier transforms (F ) as 

 { }{ } 10     , )('),(),( 4
1 −≤≤= − LlknlVnlV ςFF ; (A.11) 

where V4 is the truncated version of the time series with only range-time correlation, and 

V exhibits the required correlation in both range and sample time. Finally, note that since 

(A.10) is normalized, the mean power of V is S, as required. 
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A.3. Cross-correlation of Horizontally- and Vertically-Polarized Echoes 

In the case of dual-polarized echoes two time series need be generated, VH and VV, each 

with the previous marginal structure, i.e., exhibiting correlation in both range and sample 

time. Simultaneously, it is required to specify the properties of the joint density through 

the cross-correlation coefficient ρHV. To accomplish this, we construct two independent 

time series (X and Y) with assigned range- and sample-time correlation following (A.9) 

and (A.11). Then, proceed as follows: 

 ),(),( nlXnlVH =  (A.12) 

and 

 ),(),(),( nlYnlXnlVV βα += , (A.13) 

where α and β are complex constants to be determined. 

It is not difficult to verify that this transformation produces the desired result. In the case 

of VH, it is obvious that the range- and sample-time correlations are the prescribed ones. 

For VV, it follows that 
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Therefore, to obtain the required correlation in range we must have |α|2+|β|2 = 1. 

In a similar way, 
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The cross-correlation between VH and VV is 

 )()],(),([)( )(*)( mRmnlVnlVEmR T
VVH

T
VV VH

α=+= . (A.16)  

In fact, Sachidananda et al. (1986) argued that )()0()( mm HVHV ρρρ = , where ρ(m) is the 

correlation coefficient obtained from (A.8). Therefore, α in (A.16) is equal to ρHV(0) and 

we can solve for |β| to get 2)0(1 HVρ− . Note that the argument (phase) of β is not 

constrained to any particular value. If β is chosen to have the same argument as α then 
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As the last step in this stage of the simulation the differential reflectivity ZDR must be 

incorporated to the signal pair. ZDR is defined as PH/PV ; hence, the mean power of VV, PV, 

must be equal to PH/ZDR. Finally, 
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j
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DPφ
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It is important to recall that for bivariate Gaussian processes, the auto- and cross-

correlation functions (or their equivalent power spectral densities) provide a complete 

description of the underlying processes. 

A different technique for generating dual-polarized echoes was introduced by 

Chandrasekar et al. (1986). This approach makes use of the structure of the covariance 

matrix of the spectral components of a bivariate Gaussian time series, and is intrinsically 

a frequency-domain method. Consequently, it is computationally more intensive than the 

procedure described by Galati (1995). Although both methods yield equivalent results, it 
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turns out that Chandrasekar’s approach is more general because it can simulate bivariate 

Gaussian random processes with arbitrary auto- and cross-correlation functions. On the 

other hand, the method described by (A.12) and (A.13) requires that the two random 

processes exhibit the same autocorrelation and that the cross-correlation be proportional 

to the autocorrelation. In other words, the method works well only if 

)()()( T
VV

T
V

T
V VHHV

RRR κ== , which is true for this case (Sachidananda et al. 1986). 

A.4. Additive Noise 

Under realistic conditions, the sky environment and the receiver always introduces some 

amount of additive noise to the weather signals of (A.12) and (A.18). It is customary to 

assume that this noise is white (at least when compared to the signal bandwidth) and 

Gaussian with zero mean and power (variance) N. To add noise to the weather signals 

two independent time series of iid complex Gaussian rv (NH and NV) are generated and 

added to VH(l,n) and VV(l,n), respectively. That is 

 ),(),(),( nlNnlXnlV HH +=  (A.19) 

and 
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A.5. Reflectivity Gradients 

It was implicitly assumed in Section A.1 that the scatterers in the resolution volume were 

uniformly distributed along the pulse depth. This assumption, which holds true for 
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relatively narrow pulses, led to the construction of s(l,n) as a sequence of iid rv. 

Reflectivity gradients are given by a non-uniform distribution of hydrometeors among the 

slabs within the pulse. To simulate this effect, the s(l,n) sequence is multiplied with an 

arbitrary “gradient” function g(l,n), which can be a time-varying function. 

A.6. Simulation Procedure 

The complete simulation procedure is summarized as follows: 

• Input parameters 

o M: number of samples along sample-time (number of pulses) 

o L: number of samples along range-time (oversampling factor) 

o F: length of receiver filter’s impulse response 

o g(l,n): (time-varying) reflectivity gradient 

o p(l): transmitter pulse shape 

o h(l): receiver channel impulse response 

o S: signal mean power 

o N: noise mean power 

o v : Doppler mean velocity 

o σv: Doppler spectrum width 

o λ: transmitter wavelength 

o va: maximum unambiguous velocity 

 

 

for dual-polarized echoes: 

o |ρHV(0)|: magnitude of the cross-correlation coefficient for lag zero 

o φDP: differential phase 

o ZDR: differential reflectivity 
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• Procedure 
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sq(l,n) is a (2L+F−2) × M matrix of complex iid Gaussian random 
variables with zero mean and unit variance 
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o for single polarization:  ),(),(),( 11 nlnlYnlV η+=  
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for dual polarization:  ),(),(),( 11 nlnlYnlVH η+=  

),(),(),( 22 nlnlYnlVV η+=  

where ηq(l,n) are matrices of complex iid Gaussian random variables with 
zero mean and variance N  
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q  

 

• Outputs 

o For single polarization: V 

o For dual polarization: VH and VV 

Note: rows correspond to range times and columns to sample times. 

A.7. Simulation Results 

To illustrate the performance of the procedure described in Section A.6 a dual-polarized, 

oversampled, weather echo was simulated with the following set of parameters: M = 256, 

L = 10, g(l) = 1, p(l) = 1, h(l) = δ(l), S = 10 dBm, N = −10 dBm, v = 5 m s−1, σv = 2 m s−1, 

va = 32 m s−1, λ = 10 cm, |ρHV(0)| = 0.99, φDP = 30 deg, and ZDR = 5 dB. The results are 

shown in Figure A.2 and Figure A.3.  

By observing Figure A.2 and A.3 it is evident that the simulated signals exhibit the same 

range-time correlation, mean Doppler velocity, spectrum width, SNR, and cross-

correlation as specified. More precisely, it was verified that by applying spectral moment 

and polarimetric variable estimation algorithms, the original set of parameters was 

retrieved within the expected estimation errors. 

 



156 

−20 0 20
−20

−10

0

10

20

velocity (m s−1)

10
*l

og
10

| S
V

H

(v
)|2

Co−polar PSD

simulated
theoretical           

−20 0 20
−20

−10

0

10

20

velocity (m s−1)

10
*l

og
10

| S
V

V

(v
) 

|2

simulated
theoretical           

−5 0 5
0

0.2

0.4

0.6

0.8

1

range (sample number)

R
(R

)
V

H

(m
)

Range−time correlation

simulated
theoretical           

−5 0 5
0

0.2

0.4

0.6

0.8

1

range (sample number)

R
(R

)
V

V

(m
)

simulated
theoretical           

 

Figure A.2. Dual-polarized weather signal simulation. (Left column) Theoretical and simulated 
sample-time power spectral density (PSD) for both channels. (Right column) Theoretical and 

simulated range-time autocorrelation for both channels. 
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Figure A.3. Dual-polarized weather signal simulation. (Left column) Time-series on a sample-
time axis for both channels. (Right column) Theoretical and simulated cross-power spectral 

density (PSD). 
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